Home » About This Class » Course Information

Course Information

BOROUGH OF MANHATTAN COMMUNITY COLLEGE

THE CITY UNIVERSITY OF NEW YORK

Department of Mathematics

 

INTRODUCTION TO STATISTICS                           Class hours: 4

MAT 150                                                                          Credits: 4

Instructor: Dr. Piotr J. Bialas                                       Telephone:

Office:                                                                              Email: pbialas@bmcc.cuny.edu

 

A. Course Description

This course covers the study of basic statistics.  It includes measures of central tendency, measures of dispersion, graphs, the chi-square distribution, the normal distribution, sampling distributions, t-tests and correlation.

 

B. Prerequisites and co-requisites

The student must have passed or exempted from MAT 051 or MAT 012.

Eligibility: Satisfies the mathematics requirement for majors in Accounting, Business Management, Liberal Arts (Except for students concentrating in Science), Office Automation, Medical Records Technology and Community Mental Health Assistant.

 

C. Required Text and Supplementary Material

Essentials of Statistics, Sixth Edition, Triola, M., 2019 Pearson Education, Inc.

 

Statistical Computer packages are available in the Mathematics Lab (S511) in N501 and N502.

 

D. Other Resources

Tutoring is available in the Math Lab (Room S511) as well as video-taped lessons, technology (in terms of statistics computer programs, graphing calculators and internet access) and additional worksheets.

 

E. Use of Technology

A Scientific calculator is required. The new textbook comes with a free internet account, that has on line tutorials, extra practice problems and video recorded lessons. Some MAT150 sections are listed in the Schedule of Classes as taught with technology require students to use computers and/or graphing calculators.

 

F. Evaluation and Requirements of Students

At the beginning of the semester, the instructor will advise the student of the determination of the final grade that will be based on class work, examinations, quizzes, writing assignments and the final examination.  Students are required to attend all scheduled classes.

 

  1. Outline of Topics (page numbers may vary for different editions)
Class Hours and Page
Text Section
Topic
2 hours Pages 2-26 1.1 – 1.4 Introduction: Overview, Nature of Data, and Uses and abuses of Statistics.
8 hours Pages 44–135 2.1 – 2.4    &

3.1 – 3.4

Exploring data, Frequency distributions, visualizing data, Measures of Center, Measures of Variation, Measures of relative standing.
4 hours Pages 136–186 4.1 – 4.6 Probability: Fundamental addition rule, multiplication rule, conditional probability and counting.
6 hours Pages 196-235 5.1 – 5.4 Probability Distributions; Random variables; binomial distributions; their means, variance and standard deviations.
8 hours Pages 236 –296 6.1 – 6.6 Normal Probability Distributions; Sampling distributions and the Central Limit theorem
8 hours Pages 314-357 7.1 – 7.4 Confidence Intervals, Estimates and Sample Sizes
8 hours Pages 378-447 8.1 – 8.6 Steps to test a hypothesis; claims about the mean. P-values and hypothesis tests on proportions
4 hours Pages 494-528 10.1 – 10.3 Correlation and Regression
2 hours pages 554-567 11.1 – 11.2 Chi-squared tests of independence and goodness of fit

 

College Attendance Policy

At BMCC, the maximum number of absences is limited to one more hour than the number of hours a class meets in one week. For example, you may be enrolled in a three-hour class. In that class, you would be allowed 4 hours of absence (not 4 days). In the case of excessive absences, the instructor has the option to lower the grade or assign an F or WU grade.

 

Academic Adjustments/Students with Disabilities

Students with disabilities who require reasonable accommodations or academic adjustments for this course must contact the Office of Services for Students with Disabilities (Room N324;220-8180). BMCC is committed to providing equal access to all programs and curricula to all students.

 

BMCC Policy on Plagiarism and Academic Integrity Statement

Plagiarism is the presentation of someone else’s ideas, words or artistic, scientific, or technical work as one’s own creation.  Using the idea or work of another is permissible only when the original author is identified. Paraphrasing and summarizing, as well as direct quotations, require citations to the original source.  Plagiarism may be intentional or unintentional. Lack of dishonest intent does not necessarily absolve a student of responsibility for plagiarism.

 

Students who are unsure how and when to provide documentation are advised to consult with their instructors. The library has guides designed to help students to appropriately identify a cited work. The full policy can be found on BMCC’s web site, www.bmcc.cuny.edu.

 

Student Learning Outcomes

 

  1. Students will study basic concepts of descriptive statistics, including graphical representations of data and measures of central tendency, position and dispersion.

 

Students will:

Know the difference between a population and a sample.

Classify data by type.

Design a sampling plan for a statistical study.

Construct frequency distributions from data sets.

Construct histograms, polygons and ogives from frequency distributions.

Construct pie and Pareto charts.

Interpret basic charts and graphs

Define the vocabulary, terminology and symbols used in statistics.

Calculate and interpret key statistics and parameters such as

  • the mean, the mode, the median,
  • the standard deviation
  • quartiles and percentiles
  • standard (z) scores

 

  1. Students will study basic concepts of probability leading to the study of the binomial and normal probability distributions and the Central Limit Theorem.

 

Students will:

Identify the sample space of a probability experiment.

Find classical and experimental probabilities, and explain how the two are related using the Law of Large Numbers.

Use the Multiplication and Addition Rules for finding probabilities.

Find permutations and combinations.

Construct and graph discrete probability distributions.

Find the mean and standard deviation for discrete probability distributions and for binomial probabilities.

Find binomial probabilities using the formula and a table and/or technology.

Understand the properties of the normal distribution.

Use the standard normal table and/or technology to find probabilities.

Use the standard normal table and/or technology to find data values.

Understand and use the Central Limit Theorem.

 

  1. Students will be able to construct simple statistical studies and hypothesis tests using Normal distributions as well as with other distributions such as the t and the chi-squared distribution.

 

Students will:

  • Construct confidence intervals for means (large samples).
  • Construct confidence intervals for means (small samples).
  • Construct confidence intervals for population proportions.
  • Perform hypothesis tests for means (large samples).
  • Perform hypothesis tests for means (small samples).
  • Interpret the results of hypothesis tests and confidence intervals.
  • Find the linear correlation coefficient, using software if possible
  • Test the linear correlation coefficient for significance.
  • Find the equation of a regression line, using software if possible
  • Predict y values using regression equations.
  • Interpret a positive, negative or close to zero correlation
  • Perform Chi Square Goodness-of-Fit tests.