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What is CT/CS? 

CT Definitions and Classifications 

Commonly considered the article that began the current mainstream focus on 

computational thinking, Wing (2006) indicated that computational thinking includes the 

following characteristics: (1) conceptualizing, not programming, (2) fundamental, not rote skill, 

(3) a way that humans, not computers, think, (4) complements and combines mathematical and 

engineering thinking, (5) ideas, not artifacts, and (6) for everyone, everywhere. one of the 

seminal authors around computational thinking. In fact, Wing (2006), aggressively 

recommended that computational thinking needs to be taught to every student as a way to solve 

problems and potentially use computer science logic to solve a myriad of everyday problems.  In 

2008, Wing (2008) defined CT as “taking an approach to solving problems, designing systems 

and understanding human behaviour that draws on concepts fundamental to computing’’ (p. 

3717). In general, CT definitions typically seem to encompass the process of identifying a 

problem and creating potential solutions so that a computer (whether that be a human or 

machine) could potentially implement that solution.   

Gretter and Yadav (2016) referred to computational thinking as the ability to “think like a 

computer scientist” (p. 511) which utilizes specific problem solving skills focused around 

algorithmic thinking, pattern recognition, abstraction, and decomposition. Yadav et al. (2016) 

described computational thinking (CT) as “breaking down complex problems into more 

familiar/manageable sub-problems (problem decomposition), using a sequence of steps 

(algorithms) to solve problems, reviewing how the solution transfers to similar problems 

(abstraction), and finally determining if a computer can help more efficiently solve those 

problems (automation)” (p. 565). In fact, a new advanced placement course was developed to 

specifically focus on these capabilities, as opposed to pure computer science, called Advanced 

Placement Computer Science Principles (Gretter & Yadav, 2016). The AP CSP course “focuses 

on developing students’ 21st century skills, such as analyzing and representing data, 

understanding how the Internet functions, and grasping how computing impacts people and 

society” (Gretter & Yadav, 2016, p. 511). 

Many have suggested how to discuss and conceptualize computational thinking. Perhaps 

the most popular CT framework comes from Brennan and Resnick (2012). They established their 
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CT framework based on their investigations of students’ Scratch projects. They divided CT into 

concepts, practices, and perspectives (see Figures 1-3 below).  

 
Figure 1. CT Concepts. 

 
Figure 2. CT Practices. 

 
Figure 3. CT Perspectives. 

 

Policy and State Standards 

Global CT Policies 

Computational thinking has become an increased interest in K-12 education across the 

globe. Balanskat and Engelhardt (2014) surveyed 17 European countries to identify how they 

attempted to incorporate CT into the K-12 curriculum. The UK implemented CT into courses 

across disciplines (including CS, information technology, and digital citizenship)( Brown, 

Sentance, Crick, & Humphreys, 2014). In Australia, a CT course was incorporated into their 

primary and secondary school curriculum (Falkner, Vivian, & Falkner, 2014). Poland 

implemented a three-stage process for integrating CT courses in their primary and secondary 

schools. The final stage required computer science in their high school final examinations (Sysło 

& Kwiatkowska, 2015). South Korea has also incorporated more than 34 hours of computer 

instruction in each grade K-12. They adopted a national curriculum and textbook around 

computer science (Heintz et al., 2016). 
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US CT Policies 

In a review of the CS standards policies for all 50 states, Guo and Ottenbreit-Leftwich 

(2020) found that 34 states had published computer science standards on their websites as of 

January 2020 and one state, Montana, announced on the website that the state plans to publish 

the CS standard in 2020 fall semester. However, the US has no universal CS standard accepted 

by all states in the U.S., and states designed CS standards for their own sake to coordinate the 

whole curriculum. In addition, Guo and Ottenbreit-Leftwich (2020) found that 22 out of 34 states 

adopted the Computer Science Teacher Association (CSTA) CS framework, and 12 states 

created CS related standards independently.  Sometimes CT/CS standards were their own 

separate subject area (n=11), and sometimes CT/CS was included into broader computing 

standards with digital literacy and citizenship (n=13). The CT/CS standards were also placed in 

different areas, such as Indiana, where CS/CT standards were housed within the science 

standards subject area (Guo & Ottenbreit-Leftwich, 2020).  

The Computer Science framework from k12cs.org was published in 2017 and helped 

guide the development of many of the CS standards (K–12 Computer Science Framework, 2016) 

The framework identified five core concepts for K-12 Computer Science: (1) Computing 

Systems, (2) Networks and the Internet, (3) Data and Analysis, (4) Algorithms and 

Programming, and the (5) Impact of Computing. Following this, the Computer Science Teacher 

Association (CSTA) established Computer Science standards that were the most commonly used 

K-12 CS standards with 22 out of the 34 states directly adopting these standards. Of the 12 states 

that did not directly use the national CSTA standards, seven states explicitly mentioned and 

included elements of computational thinking in their standards. Five states incorporated ideas 

around computational thinking from ISTE standards, which includes one standard called “to be 

the computational thinker.” However, other states separated Computational Thinking as an 

individual concept. For example, Colorado and Massachusetts organized Computational 

Thinking as an important concept in the computer science standards. Arkansas connected 

Computational Thinking with Problem Solving in their state-created Computer Science 

Standards (Guo & Ottenbreit-Leftwich, 2020). Guo and Ottenbreit-Leftwich (2020) also 

identified that 32 out of the 34 states had CS curriculum standards beginning at the kindergarten 

level.  

CT/CS Integration into Subject Area Standards 
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Computational thinking is described differently across standards and frameworks. For 

example, the CS framework did not include computational thinking as a concept, but described 

computational thinking as the practices students use in computer science. In some states, they 

integrated computational thinking into other subject areas. For example, New Jersey’s standards 

featured computational thinking as a key concept of Engineering and Design. In another 

example, Michigan adopted the Next Generation Science Standard (NGSS) and computational 

thinking was marked as one of the core concepts in the Science and Engineering Practices 

dimension. It was common for states to reference teaching computational thinking with other 

disciplines (e.g., science, math, engineering) due to the sharing concepts among diverse 

disciplines (Guo & Ottenbreit-Leftwich, 2020).  

Rationale for CT: 21st Century Skills and Digital Citizenship  

Scholars have also expressed the difficulties associated with separating CT/CS concepts 

from other computing-related areas, such as computer literacy, information technology, 

educational technology, digital citizenship, and computational thinking (Mouza et al., 2018). In 

addition, scholars have emphasized that we need to incorporate more concepts related to CS, 

such as computational thinking (Wing, 2008) and digital citizenship, as an essential skill of 

participating in society (Mossberger et al., 2007).  

Moreover, some suggested that the goal of education is to produce strong and 

contributing citizens (e.g., Roosevelt, 2008). However, with the fast development of technology, 

especially computers and the Internet, the concept of citizenship has expanded to incorporate the 

digital world. Scholars have claimed that teaching K-12 digital citizenship will help students 

become citizens that will thrive and contribute to our digital society (Ribble, 2015), as well as 

provide equal opportunities for all students in the new digital society (Vogel et al., 2017). Gretter 

and Yadav (2016) also pointed out that to be prepared for today’s participatory culture, students 

need 21st century skills that can enable them to be creators, as opposed to passive receivers of 

information. As our society is increasingly shifting towards digital engagement, students need to 

develop the ability to deconstruct problems and solve them utilizing the power of computers. 

This requires computational thinking skills. Scholars have argued that computational thinking 

skills require students to develop both domain-specific and general problem-solving skills 

(Yadav, Good, et al., 2017). Yadav, Good, et al. (2017) described the importance of 

incorporating CT into compulsory education:  
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“Computational thinking is a broadly applicable competence domain, which is important 

for individuals to be successful in today’s technological society…Given that 

computational thinking has been highlighted as an ubiquitous twenty-first century skill 

and the emphasis placed on the need to embed CT in primary and secondary schooling, 

we need to focus on better understanding how computational thinking tools support 

learners” (p. 1064).  

 

PreK-5 Strategies for CT Learning 

This section provides a look into three areas that need consideration when addressing CT 

learning with preK-5 students. In the following subsections, we will provide overviews of 

developmental appropriateness for CT learning strategies, using multiple representations in CT 

learning, and making CT learning active, hands-on, and minds-on. 

Developmental Appropriateness for CT Learning Strategies 
Teaching CT to children has been shown to be a good tool for mind development 

(Buitrago Flórez et al., 2017). As Bruner (1960) stated, “any subject can be taught effectively in 

some intellectually honest form to any child at any stage of development” (p. 33). Conceptual 

development in CT will be initially localized in the learning task in which the concept is learned, 

then through multiple instances of addressing a concept or skill, students will begin to develop 

deeper, more abstract ideas regarding the concepts. CT skills invoke modeling. In regards to 

modeling tasks, Lesh and Harel (2003) state, "if we examine a student’s performances across a 

series of related activities, it is clear that his or her apparent stage of development often varies 

considerably across tasks” (p. 186). Therefore, this would also be true of complex CT tasks that 

allow for students to express their CT models in ways that allow for refinement and testing. 

Therefore, it is important to consider how to be able to break down a complex topic like 

computer science and CT into manageable parts for younger students. 

Based on the Brennan and Resnick (2012) framework, Zhang and Nouri (2019) examined 

all Scratch-based empirical studies with Kindergarten through ninth-grade students. After 

reviewing 55 studies, they developed a progression of CT skills (concepts, practices, and 

perspectives) based on students’ ages (see Figure 4 below). This progression, while not yet well 

studied as a final product for effectiveness, is a good start to consider which CT skills to 

emphasize for different age levels.  
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Lee and Mayn-Smith (2020) investigated CT learning progressions by examining funded 

projects at NSF-funded workshops. In K-2, they identified that abstraction (in which they 

included patterns and representation) included looking for patterns in works, representing people 

with glyphs, and representing shapes and movements; algorithms included instructing Bee-Bot 

(see Robotics/Devices Section below) through a maze and instructing humans as if they were 

robots; programming and development included what they termed “everyday mechanisms” such 

as money exchange and guess my number examples; data collection and analysis included 

sorting objects and using tally marks for counting; and finally, modeling and simulation included 

running an experiment and comparing solutions. In grades 3-5, they found that abstraction 

included making abstract art and storyboarding; algorithms included programming robots or 

developing instructions for Lego builds; programming and development included CAD, 

animation of clock hands, and Scratch animations; data collection and analysis included 

comparing solutions, guessing the rules, design tasks, and simulation to produce data; and 

finally, modeling and simulation included developing models – mathematical models, 

amusement park rides, invasive species, and ecosystems (Lee & Malyn-Smith, 2020). 

  

 
Figure 4. Progression of CT skills based on learners’ age (Zhang & Nouri, 2019), p. 19. 

 

Students at any age will have inherent challenges if they are new to CT. These challenges 

can include things such as getting to know the intricacies of programming languages or 

platforms, learning how to “talk” to a machine with instructions the machine can understand, and 

getting unstuck when their program is not working (correctly or at all). If we add in the learning 
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development of elementary age students, these challenges can become increasingly difficult. 

Researchers have started to study and build these CT learning trajectories for early grades. Rich 

et al. (2018) worked to develop a decomposition learning trajectory for K-8, showing such 

dimensions as “code is reusable” and “code can be written in small parts.” This type of work 

needs to continue and be developed with greater detail for all of the CT skills. Therefore, as CT 

learning is a fairly new area to research with students at this age, pulling from the literature on 

learning progressions/trajectories for elementary students, particularly in mathematics and 

literacy, may help with addressing some of the challenges that students will face as they begin to 

develop CT skills.   

 

Using Multiple Representations in CT Learning 

The purpose of teaching computational thinking is ultimately geared toward machine 

automation (Yadav, Goode et al., 2017). The ideas behind coding a machine to perform certain 

tasks require very abstract concepts. As stated in the developmentally appropriate strategies 

section, students in early grades need to start with more concrete ideas then progress toward 

more abstract ones.  As students are developing ideas around computational thinking, helping 

students make the transitions among coding concepts is key. Multiple representations are a good 

way to do this.  

Generally, coding in secondary and postsecondary classrooms involve multiple 

representations of code. These multiple representations can include real life examples, everyday 

language, pseudocode, flowcharts, code tracing/tracking charts and tables, coding languages, etc. 

(Malik et al., 2019). Most of these representations of algorithms and debugging within coding 

are much too abstract for children to begin with (Fessakis et al., 2013). Therefore, it is important 

that students, especially K-5 students, are introduced to computational concepts using multiple 

representations starting with more concrete ideas and then progressing to more abstract. 

However, during this learning process, students need to be making translations between and 

among these representations (Moore, Brophy et al., 2020). As students are developing 

computational concepts, they will use concrete, pictorial, motor, language, and symbolic 

representations (Bers, 2018b; Lesh & Doerr, 2003; Nathan et al., 2013). These representations 

should be developmentally appropriate approximations of the processes of coding. For example, 

Moore, Brophy et al. (2020) set up purposeful analogous representations for processes of coding 
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to test the developmental appropriateness of these representations and the translation between 

them in a study of second-grade students using a computing device (see Robot Mouse in 

Robotics/Devices Section below). In this study, directional coding cards represented flow charts 

of coding and these cards could also be used for code tracing and debugging, coding with 

directional buttons were a representation of coding language, and students used language and 

gesture as pseudocode for planning. For second-grade students, translation between these 

representations often involved high cognitive demand. Therefore, students were seen developing 

intermediary representations to help manage their cognitive load and make the needed 

translations between representations to accomplish the CT tasks being asked of them (Moore, 

Brophy et al., 2020).  

But as students develop, it is important to use concrete manipulatives purposefully and 

with care. Aggarwal et al. (2017) compared 3rd-5th grade students using physical manipulatives 

to develop code within the Kodu curriculum to students who did not use the manipulatives. The 

students were divided into groups that used flashcards and tiles before entering code into the 

Kodu Game Lab or just paper and pencil representations before entering code into the Kodu 

Game Lab. Here the two groups overall performed similarly content-wise, but the group with the 

manipulatives did better on tasks that involved syntax but this was time consuming while the 

group without the manipulatives did better at completing the tasks in a timely, iterative manner 

getting immediate feedback from the software. The authors suggest that manipulatives may have 

diminishing returns and therefore should be scaffolded carefully (Aggarwal et al., 2017). These 

studies shed light on how representations can be used to develop CT competencies and how 

students learn with multiple representations. However, much more research is needed to 

understand which practices are most effective in helping students progress towards high-quality 

CT learning. 

Making CT Learning Active, Hands-on, and Minds-on 

CT is more than just coding. CT offers broad opportunities for students to engage in 

physical manipulations, movement, and motor skills (Bers, 2018b; Byers & Walker, 1995). CT 

learning also requires students to solve problems algorithmically and develop technological 

fluency and language (Bers, 2010; Papert, 1980). Students must learn the language of coding 
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through “learning about” it as well as “using” it (Bers, 2018a). These ideas suggest that students 

need to engage with the CT content in multiple hands-on and minds-on ways.  

Curricular innovations such as those described by Aggarwal et al. (2017) above that 

involve physical manipulatives provide an entry point for learners. Other curricular innovations 

involve whole body movement and large-scale concrete manipulation of objects that encourage 

CT. The Puppy Playground (Ehsan et al., 2019) engages children in engineering design to 

develop a play space for a dog using “Big Blue Blocks.” This activity could be implemented in 

any learning environment that can handle the size of the blocks, but also could be scaled using 

smaller blocks. In small groups, students worked together for a client (a kindergarten student 

who wants to let her puppy play in the yard). The criteria for the design was to keep the puppy 

from escaping, allow for play and exercise, and make the playground aesthetically pleasing by 

including patterns in the design. The physical nature of this task with the larger blocks allows 

students to think through the problem from the end-user’s perspective - that of the puppy. The 

studies of this task show the students participating in the CT concepts of problem decomposition, 

pattern recognition, debugging, algorithm and procedure, simulation, and abstraction (Ehsan et 

al., 2019; 2020). But the active, hands-on nature of the task helps students with connection 

between very characteristic engineering concepts such as user-centered design and the CT 

principles the activity was designed to elicit.  

In a more complex museum or science center exhibit, Computing for the Critters, was 

also designed to integrate engineering and CT through the context of designing an automated 

way to deliver medicine to all of the animals in a veterinary hospital. The exhibit has five 

interconnected sections: (1) a place to learn about CT and the context of the rest of the exhibit, 

(2) a physical maze for children to climb and act out the scenario, (3) a station to plan and test 

routes through the maze, (4) panels with details of different types of engineering, and (5) an 

interactive coding video game (Ehsan, Ohland et al., 2018). The CT in this exhibit is elicited as 

the students interacted with the different exhibit elements. For example, problem decomposition, 

patterns, parallelization, and simulation were elicited in the physical maze when children worked 

to physically get the medicine to all of the animals, whereas, algorithms and procedures, 

debugging, were elicited during the interactive coding game (Fagundes et al., 2020). These 

examples represent a variety of different ways hands-on, minds-on CT can be incorporated into 
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learning experiences. The examples throughout the remainder of this paper also include rich 

active learning ideas for CT learning and integration. 

 

Tools for Teaching Elementary Computational Thinking/Computer Science  

There are many great tools that can be used to develop computational thinking. Studies 

have shown that elementary teachers find computer programs such as Scratch and other CS-

focused devices to be both valuable (Clark et al., 2013) and accessible to both teachers and 

students (Lee, 2011). Israel et al. (2015) specifically indicated that even skeptical or reluctant 

teachers found value in teaching CS when provided with certain pedagogical tools. We have 

organized these into five categories (unplugged, plugged, tools, robotics/devices, curriculum, and 

books).  We will briefly discuss examples here, but a more detailed description and coverage of 

additional tools can be found in the Appendix, which was developed by Guo and Fagundes 

(2020). 

 

Unplugged Activities 

Educators and parents often turn to unplugged CT activities when access to digital 

resources is difficult or there is a desire to focus on the content rather than a gadget or object. 

Unplugged CT activities lack a digital component and typically come in the form of games and 

activities or as curricular teaching materials. Curzon et al. (2018) described unplugged 

computing as “physical objects and role play are used to illustrate computing concepts” (p. 514). 

It seems that many of the early childhood educational experiences with computational thinking 

incorporated unplugged activities. The purpose of these seemed to be the intent to make abstract 

concepts more concrete (see Figure 5).  
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Figure 5. Example of a Kindergarten Unplugged Activity from CS for All in SF. 

  

Researchers have examined the effectiveness of unplugged activities at the PreK-5 grade 

levels. In one example, Faber et al. (2017) implemented six 90-minute unplugged lessons around 

programming concepts (algorithms, variables, repetition, conditionals, and binary) in 26 primary 

schools in the Netherlands. Based on observations and interviews, they asserted that the 

unplugged games made the lesson more engaging for students. In a quasi-experimental study of 

84 second-graders in Spain, del Olmo-Muñoz et al. (2020) explored the differences between 

unplugged and plugged CT activities. The control group of 42 students completed 3 unplugged 

CT activities and 3 plugged activities, whereas the experimental group completed 6 plugged 

activities. The results showed that those students who completed unplugged and plugged 

activities significantly outperformed students that had only completed plugged activities. 

In general, it seems that unplugged activities are particularly successful for early 

childhood and primary students. Some of the most popular elementary CS curriculums at this 

point (Code.org’s CS Fundamentals, Project Lead the Way’s CS Launch, and Computer Science 

for All in SF) use both unplugged and plugged activities for CT/CS concepts. In a quasi-

experimental study of 35 elementary students, Hermans and Aivaloglou (2017) provided one half 

of the students with four plugged lessons and the other half four unplugged lessons. Afterwards, 
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both groups participated in four weeks of Scratch lessons. After eight weeks, there was no 

difference between the two groups with regards to their knowledge of programming concepts. 

However, the unplugged group was more confident of their ability and used a wider selection of 

Scratch blocks. This may show the importance of utilizing both unplugged and plugged activities 

to encourage students’ confidence and creativity.  

Typically, CS curriculum uses unplugged activities first, and then moves on to utilizing 

computational toys or visual block-based programming. Wohl et al. (2015) conducted a quasi-

experimental study over three groups of 28 students aged five to seven. They explored the 

differences between the order of three different approaches to teaching CS concepts: unplugged 

computing, tangible computing (with Cubelets) and visual block-based programming (Scratch). 

Based on their observations, Wohl et al. (2015) found that after the unplugged sessions, students 

were the most engaged in CS concepts. They suggested that the “unplugged session seemed to 

demonstrate that young children can be introduced to and engaged in relatively complex ideas” 

(p. 5). This seems to be a developmentally appropriate way to build students' understanding, and 

then apply it with an external device. 

Plugged Activities 

Plugged activities consist of online puzzles or games that students can explore. They are 

often very tailored and heavily guided. Some of these include Code.org, Hour of Code activities, 

Kodables, and Tynker. These plugged activities guide students through a set of graded 

exercises/puzzles to move characters through a scene (for example, a red Angry Bird going after 

a Green Pig). Through these experiences, students learn some of the basics concepts around 

programming such as sequencing, loops, and conditionals by using command blocks like “move 

forward” or “turn left.” These activities are less open-ended than other visual block-based 

programming environments like Scratch or Blockly. 

 
Figure 6. Retrieved from Code.org: https://studio.code.org/s/express-2020/stage/2/puzzle/2  
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Studies have shown that these plugged activities seem to increase young students’ interest 

and conceptual understanding of coding (Pila et al., 2019). However, studies have also shown 

that young students were still unable to verbally explain coding (Pila et al., 2019). In a study 

various implementations of CT in math with preschool children, Lavigne et al. (2020) found that 

activity sessions with digital apps took longer than hands-on activities (17 mins as compared to 

11 mins). In addition, teachers and students both spent the majority of their time focused on the 

learning goal 65% when working on unplugged activities and 71% when working on plugged 

activities (Lavigne et al., 2020). 

Curriculum Example of Unplugged and Plugged Activities: Code.org 

Perhaps one of the most common ways elementary teachers are teaching CS is through 

Code.org’s CS Fundamentals curriculum. This curriculum incorporates both unplugged and 

plugged activities, typically introducing a concept with an unplugged activity and following with 

a plugged activity where the student applies and practices the new concept. The concepts are 

heavily focused on computer science, but the detailed lesson plans also provide links to potential 

literacy, math, and other relevant K-5 national content area standards. There have been several 

studies conducted to investigate the impact of the Code.org curriculum. Kalelioğlu (2015) 

investigated the impact of Code.org on 32 4th year Turkish students’ reflective thinking skills 

through a quasi-experimental design. Although there were no significant differences in students’ 

reflective thinking skills, students developed a positive attitude towards programming and female 

students were as successful as their male counterparts. In another study, Lambić et al. (2020) 

examined the impact of Code.org’s second course on 293 seven to ten year-olds. They found that 

older students reported a significantly more positive attitude towards programming than younger 

students. The authors observed that many of the younger students were unable to solve many of 

the programming tasks, which resulted in a negative attitude towards programming. Therefore, 

selecting appropriately challenging materials is critical to students developing positive attitudes 

towards CS.  

One of the authors of this paper is a Code.org CS Fundamentals trainer for the state of 

Indiana. Although there are some exceptional pieces of Code.org’s work (including wonderfully 

detailed lessons plans, videos, widgets and materials), one of the challenges I have noticed is that 

K-5 teachers often only use Code.org’s plugged lessons. Without implementing the unplugged 

lessons, students are lacking the stronger introduction to concepts and CS becomes equated to 
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playing games and solving puzzles online. Elementary teachers often describe the challenges of 

fitting CS into the school day (Ozturk et al., 2018). Therefore, Century et al. (2020) worked to 

embed Code.org into one school district’s non-negotiable elementary literacy block. They 

developed “Time for CS” (Time4CS) modules that included science, ELA, and social studies 

lessons and associated Code.org lessons connected with a problem-based theme. During the 

2016-2017 academic year, 157 teachers implemented two modules for each grade (3rd – 5th) 

during existing 180-minute literacy blocks. The teachers who used Time4CS modules 

implemented more CS lessons than other in their district. In addition, the study found that these 

higher amounts of interdisciplinary teaching practices were associated with higher student 

achievement, specifically students’ state assessment ELA scores. Finally, the approach of 

incorporating Code.org Fundamentals within existing curriculum seemed to present a more 

feasible way to provide more CS opportunities to 3rd – 5th grade students. They stressed that this 

study proves that “it is possible to make time in the elementary school day for CS, and that there 

are no negative consequences for core subjects (e.g., ELA and mathematics)” (Century et al., 

2020, p. 1). Based on our engagement with this curriculum, we recommend this as an excellent 

starting point for teachers, but stress the importance of reading the lesson plans and 

implementing unplugged lessons before having students begin the plugged sessions. 

Robotics/Devices 

There are a wide range of robotics/devices that have been utilized to incorporate 

computational thinking into elementary classrooms. Some robotics have been designed to feature 

push button coding, claiming that this process enables younger students who may not have the 

capacity to utilize coding apps to engage in simple commands structures and coding.  

Bee-Bots 

One of the more popular push-button coding devices for younger children is Bee-Bot 

(Figure 7). Bee-Bot is a friendly looking bumblebee that has four arrows on its back enabling it 

to move forward 6 inches, backwards 6 inches, and turning to the left or right. PreK-5 teachers 

have students use Bee-Bot with a large grid mat. Students must code the Bee-Bot to arrive on 

certain numbers, letters, or shapes. This activity enables teachers to integrate computational 

thinking into their other subject areas and make it engaging for students. A few studies have 

shown that early childhood students (preschool and kindergarten) show increase CT skills after 
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using Bee-Bots (e.g., Caballero-González, Moñoz, & Muñoz-Repiso, 2019; Papadakis & 

Kalogiannakis, 2020).  

 
Picture from Bee-

Bot website. 
 

Picture from Bee-Bot 

website. 
 

Picture from @anneleftwich  

Figure 7. Example of Bee-Bot robots and an activity for kindergarten students.  

Robot Mouse 

Another popular robotic device that is used with early elementary students to develop CT 

skills is the Robot Mouse.  The robot mouse is sold separately or within the Code and Go™ 

Robot Mouse Activity Set developed by Learning Resources. The entire activity is a game in 

which the player sets up steps for the robot mouse to follow through a physical maze to arrive at 

the cheese. The set include Colby, the programmable battery-operated robot mouse, a wedge of 

cheese that when Colby touches it, his nose lights up and he makes a cooing noise, 16 square 

tiles that can be interlocked to make the floor of the physical maze, gates and tunnels to add to 

the maze, code cards printed with directional arrows or action symbols, and maps of maze 

puzzles for the player to solve. Figure 8 shows children playing with the Code and Go Robot 

Mouse activity set. Moore, Brophy et al. (2020) used the robot mouse game as a way to study 

students ability to translate between coding representations.   
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Figure 8. Students coding the robot mouse to navigate the maze in order to get to the cheese. 

 

 This particular robot has an add-on expansion set to specifically target early math 

concepts. The kit includes number and coding cards, dice, and a playmat to introduce coding 

lessons with addition, subtraction, and number sequencing. The activity guide includes lessons 

and games to integrate the coding mouse into a range of math lessons (e.g., even and odd 

numbers).  

Robots and robotic devices are popular STEM toys for kids. These devices have a lot to 

offer as both free-choice play and devices to help scaffold learning in more formal environments. 

Furthermore, robotics can also include “the learning of computer programming concepts such as 

iteration, input/ process/output, and control structures (procedural flow)” (Sullivan & Heffernan, 

2012, p. 107). There are many additional robotic devices that we have not had a chance to review 

for this paper. See the Appendix for a more comprehensive list of robotic devices.  

Robots and robotic devices have potential to capture the imagination of young learners. 

However, the context in which robotics is introduced can impact who will be engaged. Studies 

have shown that robotics may not appeal to female students at the secondary levels, and female 

students may need more support and be less confident (Sullivan & Bers, 2019). There is a lack of 

research on whether this also applies at the elementary levels. Therefore, special attention should 

be dedicated to ensure all students are being engaged by robotics inspired learning experiences.   
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Open-Ended Tools 

The resources mentioned in this category employ open-ended apps that students can use 

and explore in a wide range of ways. Perhaps the most common is visual block-based coding 

applications/software. The most popular visual block-based coding applications are ScratchJr 

and Scratch. According to Bers (2018a), Scratch was designed to “provide easy ways for novices 

to get started (low floor), ways for them to work on increasingly sophisticated projects over time 

(high ceiling) and multiple pathways for engagement for all children with diverse interests (wide 

walls)” (p. 2). In a review of CT education studies, Lye and Koh (2014) identified nine studies 

that examined how programming was incorporated into the K-12 curriculum. Most (n=8) of 

these studies utilized Scratch or Logo.  

Scratch 

Scratch is an open-ended coding tool that utilizes visual blocks to enable students to 

program a character. It can incorporate media and can be interactive. Students have used Scratch 

to create a wide range of projects including animated stories, news shows, music/arts projects, 

simulations, tutorials, book reports, and much more. Scratch was designed to support students 

(ages 8-16). Scratch is available in many different languages. Blocks are organized into 

categories based on actions and color-coded to make things easier to find on the far left-hand 

side. The middle is where students build the code using blocks and the stage on the right-hand 

side where the characters enact the coded program (Maloney, 2010)(see Figure 9).  
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Figure 9. Example of Current Scratch Interface. Screenshot taken from 

https://scratch.mit.edu/projects/editor/?tutorial=getStarted 

  

Zhang and Nouri (2019) reviewed all empirically based Scratch articles at the K-9 grade 

levels between 2007 and 2018. They applied the Brennan and Resnick (2012) CT framework to 

analyze and identify what concepts were being researched. They found that out of 55 articles, the 

CT concepts that were most commonly addressed were loops (n=28 studies), sequences (n=26), 

and conditionals (n=24). These have been identified as the basic control structures in all 

programming languages (Zhang & Nouri, 2019). There were at least ten studies that also 

investigated the CT concepts of variables, coordination, reading code, Boolean logic/operators, 

parallelism, events, and abstraction. In addition, nine studies focused on the CT practices 

abstracting and modularizing, while eight studies focused on debugging and testing. Zhang and 

Nouri (2019) found that K-9 students’ uses of Scratch which typically fall into games (n=21), 

animation (n=5), or storytelling (n=4). When examining the subject concepts, Zhang and Nouri 

(2019) found that 64% of the 55 K-9 Scratch studies were situated within computer science, 12% 

in arts/music/crafting, 11% in language, 9% in math, and 4% in science.  

Studies have shown that Scratch has enabled primary students to build CT skills (Zhang 

& Nouri, 2019), increase students' attitudes and interest in computer science (Sáez-López et al., 

2016) and even digital competencies and 21st century skills (Nouri et al., 2020). Sáez-López et 

al. (2016) implemented a two-year long intervention where 107 5th and 6th grade students used 
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Scratch within art and social science contexts (see evidence here: 

https://scratch.mit.edu/studios/804018/). The lessons were based on the Creative Computing 

Curriculum for Scratch created by the Creative Computing Lab at the Harvard Graduate School 

of Education. Sáez-López et al. (2016) stated that this interdisciplinary approach seemed to 

motivate students. They recommend that this approach to develop students’ computational 

thinking within a curricular context can impact students’ CT skills, art and history skills, and 

motivation for participating in more active styles of learning. 

Wohl et al. (2015) conducted a quasi-experimental study over three groups of 28 students 

aged five to seven. They explored the differences between the order of three different approaches 

to teaching CS concepts: unplugged computing, tangible computing (with Cubelets) and visual 

block-based programming (Scratch). Based on their observations, after the Scratch sessions, the 

students encouraged the students’ creativity, although it was difficult for the students to use.  

This was likely due to the fact that Scratch was too difficult for younger students to work with. 

ScratchJr 

ScratchJr programming software was created by the authors of Scratch for younger 

students in kindergarten to second grade. Design considerations included developmentally 

appropriate interface and methods of interaction. Specifically, the authors mentioned creating 

software that had a “low floor and (appropriately) high ceiling, wide walls, tinkerability, …and 

conviviality” (Flannery et al., 2013). Flannery et al. (2013) examined how younger students 

engaged with Scratch in a small pilot study of kindergarteners through second graders. 

Kindergarteners through second graders struggled to use Scratch due to literacy capabilities 

(unable to read Scratch block), lack of understanding measurements (grid patterning was 

difficult), and lack of ability to think abstractly and predict the results of blocks. Therefore, they 

set out to develop a version that could meet younger students’ needs.  

After designing Scratch Jr, Flannery et al. (2013) tested the software with 100 

kindergarten through second grade students in nine sessions. Although all students were able to 

use the software to create programs, kindergarteners seemed to struggle with the interface. One 

kindergarten project used Scratch Jr to talk about basic motions (over, under, etc.) while the first 

and second grade students often used it for retelling stories, utilizing multiple characters and 

actions. Flannery et al. (2013) also discussed the importance of building curriculum guides that 

could be integrated into math and literacy at the K-2 levels. They developed an online 
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community where early childhood educators could post and share materials and lessons 

(Flannery et al., 2013). 

Bers (2018a) described that the programming blocks were organized into six categories, 

signified by different colors, to describe overall coding constructs: “yellow Trigger blocks, blue 

Motion blocks, purple Looks blocks, green Sound blocks, orange Control flow blocks, and red 

End blocks” (p. 2). Students are able to connect blocks together to control the characters. They 

can create their own characters and background. The program was designed to be used like a 

narrative structure with different pages established to mimic the creation of a book by 

establishing pages and containing a beginning, middle, and end. In addition, students can 

integrate text and speech bubbles into their projects. 

The authors of ScratchJr wanted to create a digital playground with this app. They have 

pointed out that the application lacks the collaborative elements that are typically found on a 

playground between children. Therefore, they organized a DevTech Research Group that has 

created a Collaborative ScratchJr Projects Guide. This guide supports teachers in collaborative 

projects for students that can incorporate moving characters across multiple screens and iPads 

(Bers, 2018a)(see Figure 10 for example of collaborative Scratch Jr projects). 

 
Figure 10. Example of Scratch Jr Collaboration Project from Bers (2018a).  

 

LEGO WeDo 2.0 

Other tools/resources in this category include other robotics that utilize block-based 

coding. These include, but are not limited to Qubo, LEGO WeDo 2.0, WonderWorkshop’s Dash 

‘n Dot, LEGO Boost, Artie 3000, and VEX Robotics. LEGO WeDo 2.0 has a connected 

curriculum that integrates CS into engineering and science concepts. For example, one activity 

has students investigating pollination. Students build and program a pollination model using 
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LEGOs and a block-based coding app (see Figure 11 for example from LEGO WeDo 2.0’s 

website). 

 

 

Figure 11. LEGO WeDo 2.0 Examples. (https://education.lego.com/en-us/lessons/wedo-2-

science/plants-and-pollinators#3-create-phase) 

 

Chalmers (2018) examined how UK teachers in grades one through six implemented 

LEGO WeDo 2.0 activities. Teachers implemented lessons around pulling (investigating 

balanced and unbalanced forces), speed (investigating factors that make a car accelerate), 

structures (investigating characteristics to make buildings earthquake resistant), and plants and 

pollinators (modeling the relationship between pollinators and flowers). Based on these 

implementations, teachers reported that students seemed to develop computational thinking 

concepts (sequencing, loop, and pattern recognition) and practices (problem solving and 

debugging). Teachers also reported that students seemed to develop CT perspectives, such as 

persistence and iterating on designs, as well as collaborating and sharing ideas with their 

classmates (Chalmers, 2018). 

 LEGO WeDo 2.0 seems to be a good introduction to CT/CS ideas that are integrated into 

a problem-based situation. Like many existing curriculums, it is important to show how all these 

concepts build on each other. Otherwise, it can often seem like small STEM activities, rather 

than a curriculum. We could envision this as an introduction project to a science idea/topics like 

investigating forces, or as a culminating activity to apply concepts they have already learned.  

Cozmo 

 One of the more sophisticated robots is Cozmo. Cozmo is a robot that develops as you 

play with it. It has been used as an introduction to artificial intelligence for elementary-aged 
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students. The Cozmo robot uses Calypso (a scaffolded robot programming environment). The 

programming environment allows students to program Cozmo with advanced features such as 

“visual recognition of objects and faces, simultaneous localization and mapping (SLAM), 

landmark-based navigation, and speech input” (Touretzky & Gardner-McCune, 2018, p. 1).  In 

one study, Ehsan, Cardella, and Hynes (2020) examined two children with autism (8-10 years 

old) that tried Cozmo’s Ambulance activity with their mothers. Although both were able to code 

the robot and showcased multiple CT competencies, their experiences were different based on 

the interactions with their mothers. One mother/child interaction resulted in the child’s CT 

problem-solving and completion of the given challenges. The other mother/child interaction was 

less successful as the mother tended to focus on the child’s deficits. Ehsan et al. (2020) 

concluded that “All children can engage in CT competencies if the adults working with them 

focus on their strengths and potential rather than their deficits, and accordingly appropriate 

guiding strategies and learning opportunities are provided” (p. 7). 

Curricula 

There are a wide range of CS-focused curricula available for PreK-5. Throughout the 

paper, we have brought in many examples of curricular innovations that highlight CT in different 

ways. To supplement these examples, we also bring forth one additional fairly comprehensive 

resource. According to CSforAll’s content provider membership, there are currently 152 

different curriculum providers for PreK-5th grade (http://bit.ly/CSforAllPreK5). These range 

from CS specific (i.e., Codelicious), to robotics (e.g., Exploring Robotics), to AI-focused (e.g., 

AInspire), to STEAM integrated CS (e.g., SAM Labs). There are also resources for teachers such 

as “No Fear Coding K-5”. In this resource, the author walks teachers through integrating Bee-

Bots, Code.org lesson, and Scratch across the curriculum. One of the most commonly used CS-

focused curriculum is Code.org’s CS Fundamentals curriculum (described earlier). While we did 

not survey the majority of curricular resources, we are happy to see that more and more 

resources that integrate CT in meaningful ways are available to teachers and students. 

Books 

There have also been a range of different children’s books focusing on computer science 

within the past few years. Specifically, these books tend to focus on using literacy to teach 

CS/CT ideas and principles. Haroldson and Bellard (2020) reviewed 45 picture books and 

graphic novels published between 2015 and 2019 that focused on CS at the K-8 grade levels (see 
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below for the list from p. 7-8). The authors investigated what the computer science practices that 

the characters in the books engage in. Using the four main CS practices established in the K-12 

CS Framework, the authors reviewed the books for evidence of one of the four CS practices. 

They found that 70% of the books contained at least three of the seven practices, with only two-

percent of the books covering all seven practices. The most common practices addressed were 

Creating Computational Artifacts (80%), Developing and Using Abstractions (67%), and 

Recognizing and Defining Computational Problems (58%). The least frequently addressed 

practice was Fostering an Inclusive Computing Culture (9%). Books to support CT/CS 

integration will be discussed more in the literacy integration section. 

 

Integration of CT/CS into Other Elementary Subjects 

Scholars have argued that computational thinking is intrinsic to all subject areas, 

describing it as the core of all modern disciplines (Henderson et al., 2007). Lavigne et al. (2020) 

suggested that “developing computational thinking (CT) skills at a young age is critical for 

preparing preschool children to engage with the technologies that have become central to nearly 

every occupation and for improving achievements in STEM, literacy, and other disciplines” (p. 

63). Some scholars have pointed out that computer science shares similar content and inquiry 

methods with science (Fluck et al., 2016) or math (Rich et al., 2019). In science, Fluck et al. 

(2016) described that the concept of data and analysis in CS overlaps with the concepts of 

observing phenomena and proposing hypotheses in the scientific method. In math, Rich et al. 

(2018) explained that terms embedded in computational thinking (e.g., algorithm) and 

programming (e.g., variables) share similar terms embedded in mathematics.  

Some have claimed that by integrating computer science concepts with the other 

disciplines, it could promote the innovation of computer science curricula (Sahami et al., 2013) 

or could help with problem-solving by opening multiple ways of thinking (Denning et al., 2017). 

However, scholars also state that embedding the concepts of Computer Science within the other 

disciplines through the concept of computational thinking greatly challenged teachers (Barr & 

Stephenson, 2011). Grover and Pea (2013) pointed out that more research was needed to figure 

out how to integrate CT into elementary subject areas. 

 As the integration of CT into other subjects areas has proved challenging for teachers to 

accomplish, Yadav et al. (2019) provided a toolkit for teachers to incorporate CT into their 
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classrooms using four concepts: abstraction, decomposition, patterns, and debugging (see Figure 

12 for a breakdown of the entire guide from their article). For abstraction, teachers should focus 

on reducing complexity, encouraging students to simplify and focus on the more important 

information. For decomposition, teachers need to help students break down problems into 

smaller, more manageable parts. For patterns, facilitate opportunities for students to recognize 

and create patterns. For debugging, teachers can focus on encouraging students to identify the 

errors in their work, and to fix it themselves.  

 
Figure 12. Toolkit screenshot from Yadav et al. 2019 

 

The Importance of Context 

When considering CT integration into other subjects, the contexts that students work 

within are highly important. A theme that runs through much of the STEM integration literature 

is that STEM activities should be focused on realistic or real-world problems (Moore, Johnston, 

& Glancy, 2020). The contexts used in CT integration activities should represent complexity of 

real-world problems (Angeli et al., 2016; Berland & Steingut, 2016). Connecting the CT lessons 

to other school subjects - particularly STEM subjects (Lesh & Harel, 2003; Ryan et al., 2017), 

STEM careers (Ryu, Mentzer, & Knobloch, 2018), and the community - making them more 

socially and culturally relevant (Johnson, 2013) -  are all potentially good ways to help students 

make connections in their learning of CT. Furthermore, it has been argued that embedding 

STEM+C content in real-world contexts makes students more motivated and engaged in the 
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learning because they are more meaningful and relevant to students’ lives (Angeli et al., 2016; 

Berland & Steingut, 2016; Guzey et al., 2016). 

Integration of CT/CS into Elementary Engineering and Engineering-Based STEM  

Engineering and CT are inherently connected (National Research Council [NRC], 2011) . 

Computer science is often considered one of the disciplines of engineering and in many 

universities, the CS department is within the college of engineering. In fact, computer science, 

software engineering, and computer engineering overlap significantly - with nuanced differences 

in the focus of each discipline. The hallmark of engineering design is that the engineer designs a 

technology to meet a need. Since computer programs are technologies, then necessarily one who 

designs a computer program would also use the principles of engineering design to design it. 

Brennan and Resnick (2012) identify those who code as designers. Furthermore, criteria and 

constraints guide and limit how designers work toward their end product (NRC, 2010). Ehsan, 

Cardella, and Svarovsky (2018) found that CT elements were present within in the engineering 

design process employed by young students. Table 1 provides an overview of how their research 

identified overlaps between CT competencies and engineering design. While this is not a 

comprehensive understanding of how engineering and CT overlap, it does demonstrate the 

potential for the meaningfulness and thoroughness of how these two areas can work together. 

Table 1 

Engineering design elements and where CT competencies overlap (Ehsan, Cardella, & 

Svarovsky, 2018) 

 

Engineering Design Element Computational Thinking Concept Used During Design Task 

Problem Scoping Data Collection 
Abstraction 
Problem Decomposition 

Generating Ideas Data Analysis 
Abstraction 
Problem Decomposition 
Pattern Recognition 
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Idea Selection Pattern Recognition 
Abstraction 

Testing Solution Simulation 
Parallelization 
Debugging/Troubleshooting 
Pattern Recognition 

 

Engineering design-based integrated curricular programs are a great way to introduce 

students to CT constructs. Two such programs are PictureSTEM and ETA Hand2Mind: STEM in 

Action. PictureSTEM (picturestem.org) is a set of three curricular units for grades K-2 that 

integrate STEM+C content using engineering contexts and picture books. Each unit focuses on at 

least one mathematics, science, and CT idea that is standards-based for that grade in service of 

solving an engineering problem for a client (Tank et al., 2018). These curricula are a result of 

three NSF-funded projects (#1442416, #1519387, #1543175). Unlike many of the other curricula 

we have found, the CT is integrated into a larger unit as a means to solve an engineering problem 

that the client for the problem needs solved (Hynes et al., 2019). For example, in Designing 

Hamster Habitats (first grade), the students are working for Perri who is the owner of Perri’s Pet 

Palace. Perri wants a new design for the exercise trail for her hamster habitats. To integrate CT 

into this, the students must present their design with an accompanying algorithm that instructs 

Perri and her customers how the hamster will move through the habitat. See Figure 13 for an 

example. In order for students to be able to learn about algorithms prior to this final artifact they 

must present to Perri, students are introduced to algorithms through a picture book, Joey and Jet 

by James Yang, and then through following and creating algorithms with tangrams, which is an 

extension of some the mathematics integration already occurring in the unit. In the Joey and Jet 

reading lesson, students are asked to retell the story through sequencing using flowcharts, which 

is both a literacy standard and a CT concept (Figure 14). Then the paired CT lesson has students 

using tangrams to first follow algorithms then create their own (Figure 15). Each unit in the 

PictureSTEM curricula has a similar manner in which CT is integrated into the whole 

engineering design project and paired lessons that highlight the literacy and CT integration. The 

kindergarten PictureSTEM unit focuses on pattern recognition and abstraction in literacy and 

engineering through basket weaving and the second grade unit focuses on sequencing, 
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debugging, and algorithm development through use of a robotic device (Hynes et al., 2019; Tank 

et al., 2018). These developmentally appropriate introductions to CT work well as jumping off 

points for further explorations into CT for K-2 students. 

 

 
Figure 13. Students developing the algorithm for the hamster habitat trail and the resulting 

final letter to the client that includes the algorithm. 

 

 
Figure 14. Joey and Jet flowchart for sequencing. Student retell the story through use of 

prepositions and putting the game of fetch in the order that the dog, Jet, chases the ball. 
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Figure 15. Student following an algorithm using tangrams (right). Students then create their 

own algorithm using the worksheet (left).  

 

ETA Hand2Mind: STEM in Action curricula have two CT focused STEM kits. Each of these 

have a computational device (Robot Mouse and Botley) as part of a larger engineering design -

based STEM integration project. In the Coding Mouse Exploration, students work to develop a 

program for the robot mouse that demonstrates that they understand the basic needs of mice 

(Figure 16). In the Coding and Mineral Collection Challenge, students develop a program for a 

robot that will collect unsafe minerals that have come to the surface of the earth (Figure 17). For 

both STEM in Action units, the CT concepts include code tracing and writing and debugging 

code. 
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Figure 16. Child programming the robot mouse after designing code for the course. Image 

taken without permission from https://www.hand2mind.com/item/stem-in-action-coding-

mouse-exploration/9123   

 

 
Figure 17. Children using Botley to collect mineral samples as they explore the surface of the 

earth. Image taken without permission from https://www.hand2mind.com/item/stem-in-

actionreg-coding-mineral-collection-challenge/14422  

 

Engineering design-based STEM integration has the potential to help students understand 

how CT and computing ideas are not only for the development of technological devices but also 

for using such devices for other important reasons that are helpful to people. Context is an 
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important motivator for students as they engage with CT (Breiner et al., 2012; Corlu & Aydin, 

2016; Guzey et al., 2016; Hsiao et al., 2019; Johnson et al., 2016; Milesi et al., 2017; Stubbs & 

Myers, 2015).  Putting students in real world applications of CT will help them build an 

appreciation for CT beyond the strict constructs as we define them. 

Integration of CT/CS into Elementary Mathematics 

Some have suggested that mathematics and computational thinking are a natural fit for 

elementary integration (e.g., Rich et al., 2020). In fact, several studies have shown that 

mathematics achievement at the elementary levels seems to be linked to students’ CT skills. Rich 

et al. (2020) provided a rich comparison of the interplay of CT and mathematics play out in 

standards. They found that precision, completeness, order, repetition, and conditionals are all 

part of both mathematics and CT - but have similarities and differences that need attention.  

Studies of students at the middle school level have found that success in learning to think 

computationally can depend on mathematics ability and prior CT experiences both in and out of 

school (Grover, 2016). This finding was consistent with a few studies at the upper elementary 

level. Lewis (2012) found that 5th grade student performance on Scratch programming quizzes 

in a summer camp were highly correlated with their scores on a standardized math test. Salac et 

al. (2020) found similar results with 296 4th grade students who received instruction on events, 

sequence, and repetition based on the Creative Computing Curriculum. Although all students 

showed increases in their CT knowledge, there were statistically significant differences in 

learning outcomes between students with below grade-level math proficiency and those who 

were at or above grade-level. In a preschool study, Lavigne et al. (2020) studied an integration of 

CT ideas into mathematics instruction. The activities focused on cross-disciplinary concepts such 

as patterns, combining shapes into larger shapes, and sequencing. Lavigne et al. (2020) stated 

that “the fact that classroom teachers spent the majority of activity time on the target CT learning 

goals suggests that the approach to integrating CT into preschool math instruction shows 

promise” (p. 73). 

Scratch and Scratch Jr. have been a focus of several interventions intended to integrate 

mathematics and CT.  Scratch’s Cross-Curricular Integration Guide includes many examples and 

resources on how to integrate Scratch and mathematics. Some of the 3rd - 8th grade project 

examples include building a multiplication game, creating a simple calculator, estimation game, 

fibonacci sequence, probability dice roll games, making a shape calculator, and fractions 
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microworld. In another approach to integrating Scratch into mathematics, Maya Israel and Diana 

Franklin created Action Fractions, which provides 10-12 hours of math and Scratch instruction 

focused around 3rd and 4th grade fractions instruction 

(https://www.canonlab.org/actionfractionslessons).  

Flannery et al. (2013) also described that Scratch Jr. was designed to be integrated with 

mathematics at grades K-2. In mathematics, ScratchJr can be used to support number sense and 

measurement (distance, rotation, time, and iterations). There is a removable grid of 20 by 15 

squares, and students can use the grid to measure how far a character can/should move. Scratch 

also supports primary math at the upper elementary levels with its coordinate system, grid, x-

axis, and y-axis.  

Integration of CT/CS into Elementary Science 

There is little research on integrating CT/CS into science at the elementary levels, and 

much of what is there studies the teachers rather than student learning. One of the few articles 

that focuses on student learning is from Dickes et al.(2020). This study looked at student learning 

within a model-eliciting activity (Lesh & Doerr, 2003) as a means to integrate science 

(kinematics and ecology) with mathematics (geometry) and CT for 3rd- and 4th-grade students. 

Within the kinematics portion of the integration, the students used an agent-based programming 

tool that is on the NetLogo platform to model footprints (relating measurement and motion). 

They found that the use of CT to model the phenomena required modeling cycles, or iterations.  

This led to iterative improvement of the students’ representations (Dickes et al., 2020).  

Even though the research base for integration of science and CT is not deep, curricular 

projects are still available to support CT and science integration. Scratch’s Cross-Curricular 

Integration Guide included many examples and resources on how to integrate Scratch and 

science. Some of the 3rd - 8th grade project examples include using loops to create gravity 

systems, poison in America food nutrition, and animated biomes. There are also lesson plans and 

ideas associated with many of the CS/CT tools. For example, WonderWorkshop created a Dash 

Robot Life Cycles STEAM Project where students research their plan or animal, create a poster, 

and program Dash to visit each stage on the poster and talk about that stage. It should also be 

pointed out that many of the CS standards at the elementary level exist within the Science 

standards for different states (e.g., Indiana). 
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Integration of CT/CS into Elementary Literacy  

Some have referred to computer science/computational thinking/computer literacy as our 

“new literacy” (Jacob & Warschauer, 2018; Shein, 2014; Wilson, 2013). In addition, Kelleher, 

Pausch, and Kiesler (2007) have suggested that computer science can be a modern storytelling 

mechanism at the middle school level. Also at the middle school levels, Burke and Kafai (2012) 

worked with ten students to draft, revise, and publish digital stories. Although students were able 

to learn CS programming concepts, they did not investigate the literary elements. Burke and 

Kafai (2012) caution that “digital stories in Scratch are likewise “products” that embody both the 

technical and the creative elements of composition and offer a broader conception of what 

“writing” with computers may look like in the 21st century” (p. 6).  

Research has suggested that English ability at the elementary levels may be linked to 

students' CT skills. For example, studies at the middle school level have found that English 

ability is one of the contributing factors to students’ success in CS learning (Grover et al., 2016). 

This finding was consistent with a study at the upper elementary level. Salac et al. (2020) found 

similar results with 296 4th grade students who received instruction on events, sequence, and 

repetition based on the Creative Computing Curriculum. Although all students showed increases 

in their CT knowledge, there were statistically significant differences in learning outcomes 

between students with below grade-level reading proficiency and those who were at or above 

grade-level.  

There have been several ways literacy and CS have been used together in the curriculum. 

For example, in the younger grades, Scratch Jr was designed “to support narrative structure…[by 

letting] children create multi-page projects, like a book with a beginning, middle, and end. Text 

showing the name of each block can be revealed to support word recognition by letting children 

match intuitive icons with related text” (Flannery et al., 2013, p. 8). Lowe and Brophy (2019) 

examined the literacy practices of 18 K-2 students as they retold a fairy tale using Scratch Jr. 

Students seemed to struggle with creating animations that matched their drafted storyboards. 

There is little research documenting the role that texts, language, and vocabulary play into the 

development of a broader and more well rounded CS and computational thinking (CT) 

experience for students in K-5 classrooms. 

There are several curriculums that have incorporated storytelling specifically in their CS 

curriculum. For example, CS in SF created an entire unit around storytelling with Scratch. In 
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another example, Google for Education also developed CS First Curriculum, which has a 

specific unit dedicated to using Scratch to tell stories. Scratch’s Cross-Curricular Integration 

Guide also included many examples and resources on how to integrate Scratch and English 

language arts. Some of the 3rd - 8th grade project examples include book reports, creation myths 

retelling, informative writing (water cycle), literature circles, parts of speech random sentence 

generator, and persuasive writing. In addition, Vicky Sedgwick has created curricular integration 

ideas using the Micro:Bit with English language arts. In another literary example (Salac, 2020) 

the curriculum Comprehending Code was created to utilize reading comprehension strategies and 

research to drive computer science curriculum. Just as reading requires strategies beyond 

decoding the letters into words, students need to make “meaning of the sequences of words into 

instructions (like sentences) and the sequences of instructions into functions or programs (like 

paragraphs).” However, we were unable to identify empirically based studies on whether these 

curricula were effective in increasing students’ CT or literacy skills.  

Although there are quite a few examples of CS and literacy integration, there are a 

limited number of empirical studies investigating the effectiveness of these integrations on 

literacy. Most of the literacy/CT studies are focused on students’ CT skills improvements. For 

example, Lee (2010) taught and examined the CT knowledge and experiences of a one nine-

year-old boy. Lee met with the student once-per week for six weeks and showed him basic 

programming and Scratch functions. Over the next 18 weeks, the boy selected and built language 

arts themed projects such as digital storybooks and games. Lee found that the visual 

programming approach employed in Scratch and the analogy-based instructional strategy 

enabled the young participant to successfully learn computer programming while creating a 

variety of multimedia products. Another study suggested that Scratch can be beneficial for non-

native English speakers to learn the English. In a study of 32 4th and 5th graders in Spain, all 

students reported that this experience increased their English capabilities (Moreno-León & 

Robles, 2015). However, these were self-reported claims by the students.  

Many of these studies and resources show the potential for integrating CS into literacy 

instruction (or the other way around). We have personally seen the power of building CS 

elementary instruction around stories and literature. There have been a range of different 

children’s books focusing on computer science within the past few years. Specifically, these 

books tend to focus on using literacy to teach CS/CT ideas and principles. Haroldson and Bellard 
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(2020) reviewed 45 picture books and graphic novels published between 2015 and 2019 that 

focused on CS at the K-8 grade levels (see Figure 18 for a screenshot of the list captured from 

the article).  

 
Figure 18. List of 45 Books Reviewed by Haroldson and Bellard (2020)  

 

In other literary lists, CSTA’s K-8 CS Integration Resources curated by Todd Lash and 

Vicky Sedgwick compiled resources and books that directly relate to CS/CT. The Canon Lab at 

the University of Chicago run by Diana Franklin also established a list of books that relate to CT 

appropriate concepts for K-5 students (https://www.canonlab.org/prekreadinglist). These include 

If you give a mouse a cookie for infinite loops, or Beautiful oops for persistence and the design 

process, or The art of clean up to discuss how to organize data. For each book, they have 
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suggestions for how to incorporate ideas around CT, including summaries, key questions, 

strategies while reading the book and even coinciding activities. 

One of the more popular books is targeted towards the lower elementary grade levels is 

Hello Ruby. This book series has three different books, each focusing on a different CS-related 

concepts. The first book focuses heavily on CT. It centers around a curious little girl, Ruby, who 

uses her imagination to embark on a journey to crack the code of a mysterious card left by her 

father before heading to work. Throughout this journey, Ruby needs to apply CT skills to 

abstract and identify patterns, implement loops/conditional statements, and construct solutions. 

She is a children’s book character created by Linda Liukas as a role model for children to get 

immersed in the world of technology, computing and coding in a fun and playful, more inquiry-

based way (Kruskopf, 2016). The CS in SF curriculum at the K-2 levels are heavily based on 

these books, incorporating the unplugged activities to explore basic control structures like 

sequencing, loops, and conditionals.  

Integration of CT/CS into Elementary Music  

Researchers are also investigating ways to incorporate CS into music and the arts at the 

primary school level. For example, Baratè et al. (2017) used LEGO bricks to represent basic 

musical notations and to show how pitch and time can be represented graphically (see Figure 19 

below). Barate described that this approach requires ideas around abstraction, iteration, and 

debugging.  

 

 

 
Figure 19. Screenshots from Baratè et al. (2020)   
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Another example of incorporating music and coding is through Wonder Workshop’s 

Dash, a robot that can produce sounds and light depending on input from stimuli and/or coding 

inputted through an app. WonderWorkshop has designed lesson plans to introduce students to 

music and coding at the Kindergarten and first grade levels. Students are able to visualize the 

notes in a hierarchical order and over time. They can program the robot to play the notes on the 

xylophone through a simple app (see Figure 20). 

  

Figure 20. Screenshot examples from WonderWorkshop’s website. 

Another more advanced robot for integrating CT into music is Wigl (http://wiglbot.com/). 

This robot responds to specific notes with real-world movements and lights. For example, 

playing an “A” commands the robot to move forward, “B” backwards, “C” turns left, and “D” 

turns right. It hears notes (from any instrument and even singing) and responds with real-world 

movements, lights, and special dances. Through sequenced musical notes, you can even program 

unique moves. Another interesting initiative is Note Code, which is a music programming puzzle 

game designed as a tangible device coupled with entities to store sets of notes, play them back 

and activate different sub-components or neighboring boxes.  

Google’s CS First curriculum also has a unit dedicated to music and sound consisting of 

eight different activities. In addition, Vicky Sedgwick has created curricular integration ideas 

using the Micro:Bit with music. 

Integration of CT/CS into Elementary Arts 

In terms of the arts, ScratchJr and Scratch both enable students to create their own 

characters and backgrounds. There was little research on this at the K-5 levels, although other 

research around e-Textiles and the arts exists at the secondary level (Lui et al., 2020). At the 

elementary level, Scratch’s Cross-Curricular Integration Guide included several examples and 
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resources on how to integrate Scratch and fine arts. Some of the 3rd - 8th grade project examples 

include colors of the rainbow, making interactive landscapes, and animating aesop fables. 

Google’s CS First curriculum also includes an intermediate art unit with eight activities that 

leads students through the creation of animation, interactive artwork, photograph filters and other 

exciting artistic projects using code. 

Challenges with Integration of CT/CS into Elementary Classrooms 

Teachers and scholars reported many challenges in teaching computational 

thinking/computer science. Some of these challenges include frequent policy changes (B. Barker, 

2010), mandatory requirements from district and schools (e.g., Google Inc. & Gallup Inc, 2016; 

Indiana Department of Education, 2018), and even demands from the parents to teach CS/CT 

(Google Inc. & Gallup Inc, 2016; Wang et al., 2016). Perhaps the largest concern is due to 

competing demands from other subject areas and testing, teachers often struggle with addressing 

CT/CS in their curriculum. Scholars have suggested integrating CT/CS into existing curriculum 

(Barr & Stephenson, 2011), especially through shared terminology like those found in math 

(Barr & Stephenson, 2011; Rich et al., 2019; Sneider et al., 2014; Weintrop et al., 2016). Or 

perhaps integrating CT/CS by building content connections (Sung et al., 2017). Or through the 

potential of building pedagogy connections through elementary problem-based learning (Ozturk 

et al., 2018).  

However, teachers still describe challenges with this approach due to their lack of content 

knowledge around CT/CS. Teachers have often reported receiving a lack of training in CS/CT at 

the elementary level (e.g., Ozturk et al., 2018), and often indicate feeling underprepared and 

unable to incorporate these ideas into existing curriculum (Ottenbreit-Leftwich & Biggers, 

2017). Israel et al. (2020) and Ray et al. (2018) both found that teachers were challenged to 

differentiate elementary CS instruction for varying levels of academic abilities. They both noted 

that teachers required the support of an instructional coach (with CS and UDL background) as 

well as significant PD to successfully achieve differentiated CS instruction for all learners.  

Experts have argued that in order for K-12 teachers to be able to integrate CT, they must 

have professional support (Yadav, Gretter, et al., 2017). It appears that providing support to 

teachers in the form of curriculum, coaching, or professional development is critical to the 

success of incorporating CT into the existing K-5 curriculum. Furthermore, policies and daily 

support structures need to be established to create the system that enables CT integration. In 
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other words, elementary teachers need to know and feel the importance of CT/CS. This can be 

easily addressed by school administration acknowledging the importance of CT and providing 

teachers with the support to be able to integrate CT into their classrooms. 

Conclusion 

Computational thinking (CT) in PreK-5 is an emerging and developing field. There is still 

a great deal that we must learn about the developmental appropriateness of different techniques 

for teaching CT, especially at the elementary level. Learning trajectories and progressions are 

currently being developed and studied, but much of the research is not yet published. There are a 

limited number of curricular innovations that are ready for PreK-5 implementation, and even 

fewer that have been empirically tested, and even fewer still that are integrated into other subject 

areas with attention to meaningful content integration between subjects.  

The rationale for integration is two-fold. First, many schools face great challenges to add 

CT into their curriculum. One of the greatest challenges is the time dedicated to other subject 

areas. Second, studies have shown that contextualized application of CT tend to make learning 

more relevant and meaningful for students. Therefore, curricula that uses CT to also teach or 

reinforce other content areas through an integrated approach will be valuable for K-5 schools. 

CT integration at the K-5 levels is most commonly being done with engineering design-based 

STEM integration, with mathematics, and with literacy. The connections between engineering 

and CT are natural and have a lot of room for development. The ways of thinking in mathematics 

and CT are very similar when we think about it from a conceptual point of view. Using CT to 

reinforce literacy and reading is being shown to have great potential. These areas need more 

curricular resources for all grade bands.  

Furthermore, curricular innovations can fall in multiple areas: unplugged, plugged, tools, 

robotics, and books.  Curricular resources that fall into each of these categories and integrate 

with other subjects that are required to be taught should be created to focus on (1) clear, 

developmentally appropriate learning trajectories and strategies, (2) using multiple 

representations, and (3) making CT learning active, hands-on, and minds-on. Two stand out 

curricular examples that incorporate these elements were PictureSTEM and ETA Hand2Mind: 

STEM in Action.   

We suggest that future research continues to investigate the connections between the 

disciplines to more fully integrate CT in meaningful ways that do not add to the curriculum for 
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students, but rather enhances it for all areas. Curricula need to be developed and studied to 

address the concerns brought up here.  There is also a need for a deeper understanding of how 

students develop CT competencies both with and without integration. Very few clinical studies 

exist of how students engage with CT at different developmental stages or with a mind to the CT 

skills that need to be developed. New studies that look at CT comprehensively and breakdown 

the CT skills to focus deeply on these are needed. These studies should be used as a basis for 

developing learning opportunities for children in both formal and informal spaces.   

 

  



41 
 

REFERENCES 

Aggarwal, A., Gardner-McCune, C., & Tourestzky, D. (2017). Evaluating the effect of using 

physical manipulatives to foster computational thinking in elementary school. ACM 

SIGCSE Technical Symposium on Computer Science Education, Seattle, Washington. 

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-

6 computational thinking curriculum framework: Implications for teacher knowledge. 

Journal of Educational Technology & Society, 19(3), 47-57. 

Balanskat, A. and Engelhardt, K. (2014): Computing our future: computer programming and 

coding - priorities, school curricula, and initiatives across Europe. European Schoolnet. 

Available at: http://www.eun.org/c/document_library/get_file?uuid=521cb928-6ec4-

4a86-b522- 9d8fd5cf60ce&groupId=43887 

Baratè, A., Ludovico, L. A., & Malchiodi, D. (2017). Fostering computational thinking in 

primary school through a LEGO®-based music notation. Procedia computer science, 

112, 1334-1344. 

Barker, B. (2010). The pendulum swings: Transforming school reform. Westview House 734 

London Road, Oakhill, Stoke-on-Trent, Staffordshire, ST4 5NP, UK.: Trentham Books 

Ltd. . 

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved 

and what is the role of the computer science education community? ACM Inroads, 2(1), 

48-54. 

Berland, L. K., & Steingut, R. (2016). Explaining variation in student efforts towards using math 

and science knowledge in engineering contexts. International Journal of Science 

Education, 38(18), 2742-2761. http://doi.org/10.1080/09500693.2016.1260179 

Bers, M. U. (2010). The tangible K robotics program: Applied computational thinking for young 

children. Early Childhood Research and Practice, 12(2). 

https://ecrp.illinois.edu/v12n2/bers.html 

Bers, M. U. (2018a). Coding and computational thinking in early childhood: the impact of 

ScratchJr in Europe. European Journal of STEM Education, 3(3), 8. 

Bers, M. U. (2018b). Coding as a playground: Programming and computational thinking in the 

early classroom. Routledge. 



42 
 

Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A 

discussion about conceptions of STEM in education and partnerships. School Science and 

Mathematics, 112(1), 3-11. https://doi.org/10.1111/j.1949-8594.2011.00109.x 

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the 

development of computational thinking. Proceedings of the 2012 annual meeting of the 

American educational research association, Vancouver, Canada, 

Brown, N. C., Sentance, S., Crick, T., & Humphreys, S. (2014). Restart: The resurgence of 

computer science in UK schools. ACM Transactions on Computing Education (TOCE), 

14(2), 1-22. 

Bruner, J. S. (1960). The process of education. Harvard University Press. 

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017). 

Changing a generation’s way of thinking: Teaching computational thinking through 

programming. Review of Educational Research, 87(4), 834-860.  

Burke, Q., & Kafai, Y. B. (2012, February). The writers' workshop for youth 

programmers: digital storytelling with scratch in middle school classrooms. In 

Proceedings of the 43rd ACM technical symposium on Computer Science Education (pp. 

433-438). 

Byers, J. A., & Walker, C. (1995). Refining the motor training hypothesis for the evolution of 

play. The American Naturalist, 146(1), 25-40. https://doi.org/10.1086/285785 

Century, J., Ferris, K. A., & Zuo, H. (2020). Finding time for computer science in the elementary 

school day: a quasi-experimental study of a transdisciplinary problem-based learning 

approach. International Journal of STEM Education, 7, 1-16. 

Chalmers, C. (2018). Robotics and computational thinking in primary school. International 

Journal of Child-Computer Interaction, 17, 93-100. 

Clark, J., Rogers, M. P., Spradling, C., & Pais, J. (2013). What, no canoes? Lessons learned 

while hosting a scratch summer camp. Journal of Computing Sciences in Colleges, 28, 

204-210. 

Corlu, M. A., & Aydin, E. (2016). Evaluation of learning gains through integrated STEM 

projects. International Journal of Education in Mathematics, Science and Technology, 

4(1), 20-29. https://doi.org/10.18404/ijemst.35021 



43 
 

Curzon, P., Bell, T., Waite, J., & Dorling, M. (2018). Computational thinking. In S. A. Fincher & 

A. V. Robins (Eds.), The Cambridge Handbook of Computing Education Research (pp. 

513-546). Cambridge University Press. 

del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Computational 

thinking through unplugged activities in early years of primary education. Computers & 

Education, 150, 103832. 

Denning, P. J., Tedre, M., & Yongpradit, P. (2017). The profession of IT misconceptions about 

computer science. Communications of the ACM 60(3), 31-33. 

http://hdl.handle.net/10945/60896 

Dickes, A. C., Farris, A. V., & Sengupta, P. (2020). Sociomathematical norms for integrating 

coding and modeling with elementary science: A dialogical approach. Journal of Science 

Education and Technology, 29(1), 35-52. https://doi.org/10.1007/s10956-019-09795-7  

Ehsan, H., Cardella, M. E. & Hynes, M. (2020, Apr 17 - 21) Exploring Computational Thinking 

Engagement: An Exploratory Study on Children With Mild Autism. AERA Annual 

Meeting San Francisco, CA. (Conference Canceled). 

Ehsan, H., Cardella, M., & Svarovsky, G. (2018, April) Engineering and computational thinking 

among families engaging with an exhibit. Paper presented at the American Educational 

Research Association (AERA) Annual Meeting. New York City. NY.. 

Ehsan, H., Ohland, C., Cardella, M. (2018, June). Computing for the critters: Exploring 

computational thinking of children in informal learning settings. IEEE Frontiers in 

Education Conference, San Jose, CA. https://doi.org/10.1109/FIE.2018.8659268  

Ehsan, H., Rehmat, A. P., & Cardella, M. E. (2020). Computational thinking embedded in 

engineering design: capturing computational thinking of children in an informal 

engineering design activity. International Journal of Technology and Design Education. 

https://doi.org/10.1007/s10798-020-09562-5 

Ehsan, H., Rehmat, A., & Cardella, M. E. (2019). Computer science unplugged: Design a puppy 

playground using computational thinking. NSTA Science and Children, 57(3), 32-38. 

Faber, H. H., Wierdsma, M. D., Doornbos, R. P., van der Ven, J. S., & de Vette, K. (2017). 

Teaching computational thinking to primary school students via unplugged programming 

lessons. Journal of the European Teacher Education Network, 12, 13-24. 



44 
 

Fagundes, B., Ehsan, H., Moore, T. J., Tank, K. M., & Cardella, M. E. (2020, June). WIP: First-

graders’ computational thinking in informal learning settings. ASEE Virtual Annual 

Conference. https://doi.org/10.18260/1-2--35541 

Falkner, K., Vivian, R., & Falkner, N. (2014, January). The Australian digital 

technologies curriculum: challenge and opportunity. In Proceedings of the Sixteenth 

Australasian Computing Education Conference-Volume 148 (pp. 3-12). 

Fessakis, G., Gouli, E., & Mavroudi, E. (2013, 2013/04/01/). Problem solving by 5–6 years old 

kindergarten children in a computer programming environment: A case study. Computers 

& Education, 63, 87-97. https://doi.org/https://doi.org/10.1016/j.compedu.2012.11.016 

Flannery, L. P., Silverman, B., Kazakoff, E. R., Bers, M. U., Bontá, P., & Resnick, M. (2013). 

Designing ScratchJr: support for early childhood learning through computer 

programming Proceedings of the 12th International Conference on Interaction Design 

and Children, New York, New York, USA. https://doi.org/10.1145/2485760.2485785 

Fluck, A. E., Webb, M., Cox, M. J., Angeli, C., Malyn-Smith, J., Voogt, J., & Zagami, J. (2016). 

Arguing for computer science in the school curriculum. Educational Technology & 

Society, 19(3), 38-46. 

Google Inc. & Gallup Inc. (2016). Trends in the State of Computer Science in U.S. K-12 

Schools. Retrieved from http://goo.gl/j291E0. 

Gretter, S., & Yadav, A. (2016). Computational thinking and media & information literacy: An 

integrated approach to teaching twenty-first century skills. TechTrends, 60(5), 510-516. 

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. 

Educational Researcher, 42(1), 38-43.  

Grover, S., Pea, R., & Cooper, S. (2016). Factors influencing computer science learning in 

middle school. Proceedings of the 47th ACM technical symposium on computing science 

education,  (pp. 552-557).  

Guo, M., & Ottenbreit-Leftwich, A. (2020). Exploring the k-12 computer science curriculum 

standards in the U.S. Workshop in Primary and Secondary Computing Education, Online. 

Guzey, S. S., Moore, T. J., & Harwell, M. (2016). Building up STEM: An analysis of teacher-

developed engineering design-based STEM integration curricular materials. Journal of 

Pre-College Engineering Education Research (J-PEER), 6(1), 11-29. 

https://doi.org/https://doi.org/10.7771/2157-9288.1129 



45 
 

Haroldson, R., & Ballard, D. (2020). Alignment and representation in computer science: an 

analysis of picture books and graphic novels for K-8 students. Computer Science 

Education, 1-26.  

Heintz, F., Mannila, L., & Farnqvist, T. (2016, October). A review of models for 

introducing computational thinking, computer science and computing in K-12 education. 

IEEE Frontiers in Education Conference, Erie, PA. 

https://doi.org/10.1109/FIE.2016.7757410 

Henderson, P. B., Cortina, T. J., & Wing, J. (2007). Computational thinking Proceedings of the 

38th SIGCSE technical symposium on Computer science education, Covington, 

Kentucky, USA. https://doi.org/10.1145/1227310.1227378 

Hermans, F., & Aivaloglou, E. (2017). To scratch or not to scratch? A controlled experiment 

comparing plugged first and unplugged first programming lessons. Proceedings of the 

12th workshop on primary and secondary computing education, 

Hsiao, H.-S., Lin, Y.-W., Lin, K.-Y., Lin, C.-Y., Chen, J.-H., & Chen, J.-C. (2019). Using robot-

based practices to develop an activity that incorporated the 6E model to improve 

elementary school students’ learning performances. Interactive Learning Environments, 

1-15. https://doi.org/10.1080/10494820.2019.1636090 

Hynes, M. M., Cardella, M. E., Moore, T. J., Brophy, S. P., Purzer, S., Tank, K. M., Menekse, 

M., Yeter, I. H., & Ehsan, H. (2019, June). Inspiring young children to engage in 

computational thinking in and out of school (Research-to-practice). American Society for 

Engineering Education Annual Conference & Exposition, Tampa, FL. 

Indiana Department of Education. (2018b). STEM Six-Year strategic Plan: An Integrated K-12 

STEM Approach for Indiana Retrieved from 

https://www.doe.in.gov/sites/default/files/wf-stem/20181108154535030.pdf 

Israel, M., Jeong, G., Ray, M., & Lash, T. (2020). Teaching Elementary Computer Science 

through Universal Design for Learning Proceedings of the 51st ACM Technical 

Symposium on Computer Science Education, Portland, OR, USA. https://doi-

org.proxyiub.uits.iu.edu/10.1145/3328778.3366823 

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all learners 

in school-wide computational thinking: A cross-case qualitative analysis. Computers & 

Education, 82, 263-279.  



46 
 

Jacob, S. R., & Warschauer, M. (2018). Computational thinking and literacy. Journal of 

Computer Science Integration, 1(1). 

Johnson, C. C., Peters-Burton, E. E., & Moore, T. J. (2016). STEM road map: A framework for 

integrated STEM education  [Book]. Routledge. 

http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1021248&site=ehos

t-live 

K–12 Computer Science Framework. (2016). http://www.k12cs.org 

Kelleher, C. & Pausch, R., & Kiesler, S. (2007). Storytelling Alice motivates middle school girls 

to learn computer programming. Conference on Human Factors in Computing Systems - 

Proceedings. P. 1455-1464. 10.1145/1240624.1240844. 

Kruskopf, M. (2016). Explorations on the nature of children's conceptual change in 

computational thinking during hello ruby summer school 2016. Master’s Thesis, 

University of Helsinki. Retrieved from 

https://helda.helsinki.fi/bitstream/handle/10138/174410/MastersThesisMillaKruskopf201

6.pdf?isAllowed=y&sequence=2  

Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code. org. 

Computers in Human Behavior, 52, 200-210. 

Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code. org. 

Computers in Human Behavior, 52, 200-210. 

Kong, S.-C., Chiu, M. M., & Lai, M. (2018). A study of primary school students' interest, 

collaboration attitude, and programming empowerment in computational thinking 

education. Computers & Education, 127, 178-189. 

Lambić, D., Đorić, B., & Ivakić, S. (2020). Investigating the effect of the use of code. org on 

younger elementary school students’ attitudes towards programming. Behaviour & 

Information Technology, 1-12. 

Lambić, D., Đorić, B., & Ivakić, S. (2020). Investigating the effect of the use of code. org on 

younger elementary school students’ attitudes towards programming. Behaviour & 

Information Technology, 1-12. 

Lavigne, H. J., Lewis-Presser, A., & Rosenfeld, D. (2020). An exploratory approach for 

investigating the integration of computational thinking and mathematics for preschool 

children. Journal of Digital Learning in Teacher Education, 36(1), 63-77. 



47 
 

Lee, Y.-J. (2010). Developing computer programming concepts and skills via technology-

enriched language-art projects: A case study. Journal of Educational Multimedia and 

Hypermedia, 19(3), 307-326. 

Lee, I., & Malyn-Smith, J. (2020). Computational thinking integration patterns along the 

framework defining computational thinking from a disciplinary perspective. Journal of 

Science Education and Technology, 29(1), 9-18. https://doi.org/10.1007/s10956-019-

09802-x  

Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modeling perspective on 

mathematics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.), 

Beyond constructivism: Models and modeling perspectives on mathematics problem 

solving, learning, and teaching (pp. 3-34). Lawrence Erlbaum. 

Lesh, R., & Harel, G. (2003). Problem solving, modeling, and local conceptual development. 

Mathematical Thinking and Learning, 5(2), 157-189. 

https://doi.org/https://doi.org/10.1207/S15327833MTL0502&3_03 

Lewis, C. M., & Shah, N. (2012, February). Building upon and enriching grade four mathematics 

standards with programming curriculum. In Proceedings of the 43rd ACM technical 

symposium on Computer Science Education (pp. 57-62). 

Lowe, T., & Brophy, S. (2019). Identifying computational thinking in storytelling literacy 

activities with Scratch Jr. In ASEE Annual Conference Proceedings (p. 10). 

Lui, D., Walker, J. T., Hanna, S., Kafai, Y. B., Fields, D., & Jayathirtha, G. (2020). 

Communicating computational concepts and practices within high school students’ 

portfolios of making electronic textiles. Interactive Learning Environments, 28(3), 284-

301. 

Lye, S. Y., & Koh, J. H. L. (2014, 2014/12/01/). Review on teaching and learning of 

computational thinking through programming: What is next for K-12? Computers in 

Human Behavior, 41, 51-61. https://doi.org/10.1016/j.chb.2014.09.012 

Malik, S. I., Shakir, M., Eldow, A., & Ashfaque, M. W. (2019). Promoting algorithmic thinking 

in an introductory programming course. International Journal of Emerging Technologies 

in Learning, 14(1), 84-94. https://doi.org/10.3991/ijet.v14i01.9061 



48 
 

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch 

programming language and environment. ACM Transactions on Computing Education 

(TOCE), 10(4), 1-15.  

Milesi, C., Perez-Felkner, L., Brown, K., & Schneider, B. (2017, 2017-April-25). Engagement, 

Persistence, and Gender in Computer Science: Results of a Smartphone ESM Study 

[Original Research]. Frontiers in Psychology, 8(602). 

https://doi.org/10.3389/fpsyg.2017.00602 

Moore, T. J., Brophy, S. P., Tank, K. M., Lopez, R. D., Johnston, A. C., Hynes, M. M., & 

Gajdzik, E. (2020). Multiple representations in computational thinking tasks: A clinical 

study of second-grade students. Journal of Science Education and Technology, 29(1), 19-

34. https://doi.org/10.1007/s10956-020-09812-0 

Moore, T. J., Johnston, A. C., & Glancy, A. W. (2020). STEM integration: A synthesis of 

conceptual frameworks and definitions. In C. C. Johnson, M. J. Mohr-Schroeder, T. J. 

Moore, & L. D. English (Eds.), Handbook of Research on STEM Education (pp. 3-16). 

Routledge. 

Moreno-León, J., & Robles, G. (2015, March). Computer programming as an educational tool in 

the English classroom a preliminary study. In 2015 IEEE Global Engineering Education 

Conference (EDUCON) (pp. 961-966). IEEE. 

Mossberger, K. (2009). Toward digital citizenship. Addressing inequality in the information age. 

Routledge handbook of Internet politics, 173, 85. 

Mossberger, K., Tolbert, C. J., & McNeal, R. S. (2007). Digital citizenship: The Internet, society, 

and participation. MIT Press. 

Mouza, C., Yadav, A., & Ottenbreit-Leftwich, A. (2018). Developing computationally literate 

teachers: Current perspectives and future directions for teacher preparation in computing 

education. Journal of Technology and Teacher Education, 26(3), 333-352. 

Nathan, M. J., Srisurichan, R., Walkington, C., Wolfgram, M., Williams, C., & Alibali, M. W. 

(2013). Building cohesion across representations: A mechanism for STEM integration. 

Journal of Engineering Education, 102(1), 77-116. 

https://doi.org/http://doi.org/10.1002/jee.20000 

National Research Council. (2010). Report of a workshop on the scope and nature of 

computational thinking. The National Academies Press. https://doi.org/10.17226/12840 



49 
 

National Research Council. (2011). Report of a workshop on the pedagogical aspects of 

computational thinking. The National Academies Press. https://doi.org/10.17226/13170 

Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking, 

digital competence and 21st century skills when learning programming in K-9. Education 

Inquiry, 11(1), 1-17. 

Ottenbreit-Leftwich, A.T. & Biggers, M. (2017). Status of K-14 computer science education in 

Indiana: Landscape Report. Submitted to the NSF’s ECEP Alliance, the Indiana 

Department of Education, Governor of Indiana, Code.org, and Indiana legislators. 

http://bit.ly/CSforINFinalReport 

Ozturk, Z., Dooley, C. M., & Welch, M. (2018). Finding the hook: Computer science education 

in elementary contexts. Journal of Research on Technology in Education, 50(2), 149-163. 

Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Developing fundamental programming 

concepts and computational thinking with ScratchJr in preschool education: a case study. 

International Journal of Mobile Learning and Organisation, 10(3), 187-202. 

Papert, S. (1980). Mindstorms. Children, computers and powerful ideas. Basic Books. 

Pila, S., Aladé, F., Sheehan, K. J., Lauricella, A. R., & Wartella, E. A. (2019). Learning to code 

via tablet applications: An evaluation of Daisy the Dinosaur and Kodable as learning 

tools for young children. Computers & Education, 128, 52-62. 

Pila, S., Aladé, F., Sheehan, K. J., Lauricella, A. R., & Wartella, E. A. (2019). Learning to code 

via tablet applications: An evaluation of Daisy the Dinosaur and Kodable as learning 

tools for young children. Computers & Education, 128, 52-62. 

Ray, M. J., Israel, M., Lee, C., & Do, V. (2018). A Cross-Case Analysis of Instructional 

Strategies to Support Participation of K-8 Students with Disabilities in CS for All 

Proceedings of the 49th ACM Technical Symposium on Computer Science Education, 

Baltimore, Maryland, USA. https://doi.org/10.1145/3159450.3159482 

Ribble, M. (2015). Digital citizenship in schools: Nine elements all students should know 

(third ed.). International Society for Technology in Education. 

Rich, K. M., Binkowski, T. A., Strickland, C., & Franklin, D. (2018). Decomposition: A K-8 

computational thinking learning trajectory Proceedings of the 2018 ACM Conference on 

International Computing Education Research, Espoo, Finland. https://doi-

org.proxyiub.uits.iu.edu/10.1145/3230977.3230979 



50 
 

Rich, K. M., Spaepen, E., Strickland, C., & Moran, C. (2020). Synergies and differences in 

mathematical and computational thinking: Implications for integrated instruction. 

Interactive Learning Environments, 28(3), 272-283. 

https://doi.org/10.1080/10494820.2019.1612445  

Rich, K. M., Yadav, A., & Schwarz, C. V. (2019). Computational thinking, mathematics, and 

science: Elementary teachers’ perspectives on integration. Journal of Technology and 

Teacher Education, 27(2), 165-205. 

Roosevelt, E. (2008). Good citizenship: The purpose of education. Yearbook of the National 

Society for the Study of Education, 107(2), 312-320. 

Ryan, M., Gale, J., & Usselman, M. (2017). Integrating engineering into core science instruction: 

Translating NGSS principles into practice through iterative curriculum design. 

International Journal of Engineering Education, 33(1B), 321-331. 

Ryu, M., Mentzer, N., & Knobloch, N. (2018). Preservice teachers’ experiences of STEM 

integration: Challenges and implications for integrated STEM teacher preparation. 

International Journal of Technology and Design Education. 

http://doi.org/10.1007/s10798-018-9440-9 

Sáez-López, J.-M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming 

languages integrated across the curriculum in elementary school: A two year case study 

using “Scratch” in five schools. Computers & Education, 97, 129-141. 

Sahami, M., Roach, S., Cuadros-Vargas, E., & LeBlanc, R. (2013). ACM/IEEE-CS computer 

science curriculum 2013: reviewing the ironman report. Proceeding of the 44th ACM 

technical symposium on Computer science education, 

Salac, J., Thomas, C., Twarek, B., Marsland, W., & Franklin, D. (2020, February). 

Comprehending code: Understanding the relationship between reading and math 

proficiency, and 4th-grade cs learning outcomes. In Proceedings of the 51st ACM 

Technical Symposium on Computer Science Education (pp. 268-274). 

Seiter, L., & Foreman, B. (2013). Modeling the learning progressions of computational thinking 

of primary grade students Proceedings of the ninth annual international ACM conference 

on International computing education research, San Diego, San California, USA. 

https://doi-org.proxyiub.uits.iu.edu/10.1145/2493394.2493403 



51 
 

Shein, E. (2014). Should everybody learn to code? Communications of the ACM 57(2), 16–18. 

DOI:https://doi.org/10.1145/2557447 

Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Exploring the science framework 

and NGSS: Computational thinking in the science classroom. Science Scope, 38(3), 10-

15. 

Stubbs, E. A., & Myers, B. E. (2015, 06//). Multiple case study of STEM in school-based 

agricultural education [Article]. Journal of Agricultural Education, 56(2), 188-203. 

https://doi.org/http://doi.org/10.5032/jae.2015.02188 

Sullivan, A., & Bers, M. U. (2019). Vex robotics competitions: Gender differences in student 

attitudes and experiences. Journal of Information Technology Education: Research, 18, 

97-112. https://doi.org/10.28945/4193 

Sullivan, F. R., & Heffernan, J. (2016). Robotic construction kits as computational manipulatives 

for learning in the STEM disciplines. Journal of Research on Technology in Education, 

48(2), 105-128. https://doi.org/10.1080/15391523.2016.1146563 

Sung, W., Ahn, J., & Black, J. B. (2017). Introducing computational thinking to young learners: 

Practicing computational perspectives through embodiment in mathematics education. 

Technology, Knowledge and Learning, 22(3), 443-463. 

Sysło, M. M., & Kwiatkowska, A. B. (2015). Introducing a new computer science curriculum for 

all school levels in Poland. In A. Brodnik & J. Vahrenhold (Eds.), Informatics in schools. 

Curricula, competences, and competitions (pp. 141-154). Springer International 

Publishing. https://doi.org/10.1007/978-3-319-25396-1_13  

Tank, K. M., Moore, T. J., Dorie, B. L., Gajdzik, E., Terri Sanger, M., Rynearson, A. M., & 

Mann, E. F. (2018). Engineering early elementary classrooms through the integration of 

high-quality literature, design, and STEM+C content. In L. English & T. Moore (Eds.), 

Early Engineering Learning (pp. 175-201). Springer Singapore. 

https://doi.org/10.1007/978-981-10-8621-2_9 

Touretzky, D. S., & Gardner-McCune, C. (2018). Calypso for Cozmo: Robotic AI for everyone. 

Proceedings of the 49th ACM Technical Symposium on Computer Science Education, 

Baltimore, Maryland, USA. https://doi.org/10.1145/3159450.3162200 

Vogel, S., Santo, R., & Ching, D. (2017, March). Visions of computer science education: 

Unpacking arguments for and projected impacts of CS4All initiatives. In Proceedings of 



52 
 

the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (pp. 609-

614). 

Vogel, S., Santo, R., & Ching, D. (2017, March). Visions of computer science education: 

Unpacking arguments for and projected impacts of CS4All initiatives. In Proceedings of 

the 2017 ACM SIGCSE Technical Symposium on Computer Science Education (pp. 609-

614). 

Wang, J., Hong, H., Ravitz, J., & Hejazi Moghadam, S. (2016). Landscape of K-12 computer 

science education in the US: Perceptions, access, and barriers. Paper presented at the 

Proceedings of the 47th ACM Technical Symposium on Computing Science Education. 

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). 

Defining computational thinking for mathematics and science classrooms. Journal of 

Science Education and Technology, 25(1), 127-147. 

Wilson, C. (2013). Making computer science count. Communications of the ACM 56(11), 32–33. 

DOI:https://doi.org/10.1145/2527189 

Wing, J. M. (2006). Computational thinking. Commun. ACM, 49(3), 33–35. 

https://doi.org/10.1145/1118178.1118215 

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical 

transactions. Series A, Mathematical, physical, and engineering sciences, 366(1881), 

3717-3725. https://doi.org/10.1098/rsta.2008.0118 

Wohl, B., Porter, B., & Clinch, S. (2015). Teaching Computer Science to 5-7 year-olds: An 

initial study with Scratch, Cubelets and unplugged computing. proceedings of the 

workshop in primary and secondary computing education, 

Yadav, A., Good, J., Voogt, J., & Fisser, P. (2017). Computational thinking as an emerging 

competence domain. In Competence-based vocational and professional education (pp. 

1051-1067). Springer. 

Yadav, A., Gretter, S., Good, J., & McLean, T. (2017). Computational thinking in teacher 

education. In P. J. Rich & C. B. Hodges (Eds.), Emerging Research, Practice, and Policy 

on Computational Thinking (pp. 205-220). Springer International Publishing. 

https://doi.org/10.1007/978-3-319-52691-1_13 



53 
 

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical 

approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends, 

60(6), 565-568.  

Yadav, A., Larimore, R., Rich, K., & Schwarz, C. (2019). Integrating computational thinking in 

elementary classrooms: Introducing a toolkit to support teachers Society for Information 

Technology & Teacher Education International Conference 2019, Las Vegas, NV, United 

States. https://www.learntechlib.org/p/208366 

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through 

Scratch in K-9. Computers & Education, 141, 103607. 

   

  

 

 

 

 

 

 



54 
 

Appendix 

 The appendix for this white paper was developed by Meize Guo, a PhD candidate at 

Indiana University, and Barbara Fagundes, a PhD student at Purdue University. Ms. Guo is 

advised by Dr. Anne Ottenbreit-Leftwich, and Ms. Fagundes is advised by Dr. Tamara Moore. 

The contents of the Appendix can be found at: https://docs.google.com/spreadsheets/d/1eo4-

ReBlKt6RaTQkFBZzv5BXGSuhb7wcxH7ezfzkpR8/edit?usp=sharing  

 

 

 

 


