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Abstract
Although abstraction is widely understood to be one of the primary components of
computational thinking, the roots of abstraction may be traced back to different fields.
Hence, the meaning of abstraction in the context of computational thinking is often
confounded, as researchers interpret abstraction through diverse lenses. To disen-
tangle these conceptual threads and gain insight into the operationalisation of ab-
straction, a systematic review of 96 empirical studies was undertaken. Analysis revealed
that identifying features of entities, extracting relevant features, discovering patterns,
creating rules and assembling the parts together were the core actions of abstraction.
With the primary aim of simplifying practical procedures, abstraction was oper-
ationalised as the sophistication of a program, the matching of patterns, the creation of
alternative representations, the transfer of solutions, the measurement of a learner’s
activity and reading program codes. There is an obvious need for researchers to align
the conceptual meanings they have established of abstraction with the practical facts of
operationalisation. The need to empirically validate emerging models and the impli-
cations for future research are discussed.
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Introduction

In 2006, Wing called on computer science (CS) educators to look beyond their domain
and teach non-CS majors ‘ways to think like a computer scientist’ (Wing, 2006, p. 35).
Wing’s call to make the computer scientist’s ways of thinking accessible to everyone,
commonly referred to as computational thinking (CT), is often understood to be a
seminal moment in the development of CT (Grover & Pea, 2013; Shute et al., 2017).
With the common aim of deconstructing what it means to think like a computer
scientist, researchers have framed CT in different ways (e.g. Barr et al., 2011; Brennan
& Resnick, 2012; Csizmadia et al., 2015; Korkmaz et al., 2017; Selby & Woollard,
2013; Shute et al., 2017; Weintrop et al., 2016). These frameworks contain overlapping
constructs, which emphasise the complex nature of CT and the associated difficulty in
delineating the potentially boundless thinking styles of computer scientists into neat
categories. For example, ‘object-oriented’ mapping is a powerful problem-solving
approach in CS, but it is rarely mentioned in CT discourse. Therefore, reaching
consensus in this area appears to be an uphill battle, and may not be feasible (Ezeamuzie
& Leung, 2021). To advance CT research and practice, it is important to avoid the trap
of seeking an overarching definition of CT and to instead explore how the constituent
cognitive practices of CT might be harnessed to solve everyday problems.

In this study, we focus on abstraction (or abstract thinking), one of the core cognitive
practices that computer scientists deploy to solve problems. According to Kramer
(2007), a computer scientist’s propensity to produce well-designed programs is directly
related to the ability to think abstractly. This view was echoed by Colburn and Shute
(2007), who showed that breakthroughs in the design of programming languages,
operating systems, network architecture and software have been primarily rooted in
abstraction. Similarly, the centrality of abstraction in both the theories and practices of
CT is undisputable. It is a consistent feature of most CT frameworks and a core
component of CT Wing (2008). Moreover, abstraction has been the most significant
component of CT in empirical studies measuring learners’ CT development
(Ezeamuzie & Leung, 2021). According to Grover and Pea (2013), abstraction is not
just the keystone of CT but the very element that distinguishes it from other thinking
styles.

Abstraction is neither a new nor an emerging idea. Rather, it has a rich history that
spans different knowledge domains, such as mathematics (Cetin & Dubinsky, 2017)
and CS (Colburn & Shute, 2007). Similar to complex constructs such as problem-
solving, intelligence and critical thinking, abstraction is operationalised differently
across different domains and often best demonstrated with examples. For instance, the
abstract of any scholarly article, which summarises the article’s argument, methods and
findings, may be regarded as an abstraction of the article. In this case, the quality of the
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abstraction is a subjective assessment of how well the abstract summarised the article.
However, it would be too simplistic to make an analogy from this case to instances of
abstraction in other domains. The nature of abstraction varies by context, as dem-
onstrated in Barr and Stephenson’s (2011) examples of abstraction in mathematics,
science, social studies and language arts.

According to Guzdial (2008), making CT (including abstraction) mainstream in all
areas of knowledge will require tapping into and drawing on the strengths of other
domains (e.g. psychology, sociology and education) in the reform of CS education. For
computer scientists, abstraction is often interpreted as either the process of focusing on
the main features in a system or the process of extracting common features from several
instances and generalising the model (Hill et al., 2008; Kramer, 2007). However, as we
have begun to shift between delivering traditional CS education and extending the
constructs of CS to CT research, the clarity of abstraction as a concept has emerged as a
point of concern. The difficulties revealed in these trends reminded us of Nardelli’s
(2019) warning that promoting CTas a new subject may potentially harm CS education.
Obviously, we have not been alone in the quest to disentangle the core meaning of
abstraction from its operating models. Similar disagreements between researchers over
the fundamental meaning of abstraction were highlighted in Cetin and Dubinsky’s
(2017) discussion of how abstraction might act as a bridge between CT and theories in
mathematics.

The more we read, the more researchers’ways of operationalising abstraction left us
confused. By operationalisation, we meant the actual implementation of abstraction in
CT empirical studies, which is different from the conceptual definitions. We concluded
that gaining a deeper understanding of abstraction is an important step in advancing our
own CT research and that of others. Apart from being motivated by our natural curiosity
about the recent revelations on abstraction, we were interested in uncovering issues in
aligning the various conceptual meanings of abstraction with concrete examples of its
operationalisation. Therefore, we chose to systematically review the CT literature and
expand our understanding of the ways that abstraction has been conceptualised and
operationalised. The findings from our review will provide a platform for educators,
including those who are interested in joining the CT community, to clearly grasp the
conceptualisation and operationalisation of abstraction. In addition, because abstraction
is an interdisciplinary cognitive ability, clarifying this pillar of CTwill help to make the
boundaries between CT research and adjacent fields more permeable, and thus facilitate
access to researchers from other fields, who may not be well informed about the theory
and subtleties of abstraction from CS research.

In this systematic review, we addressed the following research question – How has
abstraction been conceptualised and operationalised in CT studies assessing learners’
abstraction skills?

Note that the terms conceptualisation and operationalisation were contra-
distinguished in this study. Conceptualisation referred to the prosaic meaning of
abstraction used in a given article while operationalisation referred to the action that
measured the implementation of abstraction.
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Theoretical Framework

This section describes the philosophical underpinnings of abstraction as a concept and
its relation to CT. To disentangle various proposed meanings of abstraction from each
other, this theoretical discourse sought to understand the evolution of the concept of
abstraction and thus generate a framework for analysing this construct.

Computational Thinking

Wing’s (2006) call for everybody to acquire CT was rooted in the hypothesis that the
computer scientist’s thinking style could provide a general problem-solving strategy by
harnessing the intellectual power inherent in CS for purposes far beyond CS. This
assertion was not peculiar to Wing, appearing continually in the historical development
of CT (Tedre & Denning, 2016). Similar statements appeared in Alan Perils’ call for
programming to be adopted in the liberal arts (Perils, 1962, as cited in Guzdial, 2008),
Donald Knuth’s view of how teaching a computer to perform tasks might increase
conceptual clarity (Knuth, 1974) and Seymour Papert’s vision of the epistemic de-
velopment that occurs when children teach computers to think (Papert, 1980).

When Wing first shared this vision, CT was associated with various concepts, such
as problem-solving, system design, recursive thinking, parallel processing, data in-
terpretation, abstraction, decomposition and heuristic reasoning (Wing, 2006). Al-
though this conceptualisation of CT has drawn criticism for being overly broad and
somewhat vague (Mannila et al., 2014), Wing’s central argument was vivid – anyone
can develop the thinking style of a computer scientist and apply it to solve problems.
Since Wing’s first proposal, several frameworks have emerged that potentially clarify
the best way to model CT, such as the framework developed by the International
Society for Technology in Education (Barr et al., 2011; Barr & Stephenson, 2011),
Computing at School (Csizmadia et al., 2015) and others (e.g. Brennan & Resnick,
2012; Korkmaz et al., 2017; Selby & Woollard, 2013; Shute et al., 2017; Weintrop
et al., 2016).

Concepts like CT have multiple definitions because each researcher tends to in-
terpret concepts through a unique lens. Reasonably, the advantages of the variety of CT
definitions cannot be ignored; they contribute to a richer understanding of the mul-
tifaceted nature of CT. Although it would be desirable for the purposes of learning and
assessment to have a focused definition of CT, Nardelli (2019) cautioned against
attempts to map it out as a school subject and suggested that CT should be interpreted
‘as a shorthand’ for teaching CS to every student (p. 32). Most empirical studies
measuring participants’ development of CT have operationalised it as a composite of
programming concepts, with a preference for assessment-based frameworks
(Ezeamuzie & Leung, 2021). However, a sizable number of these studies had no clear
model distinguishing CT from programming (Ezeamuzie & Leung, 2021).

In this study, we interpreted CT through Wing’s (2006) lens as thinking like a
computer scientist. This holistic approach aimed to avoid commonly encountered
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pitfalls such as exaggerated claims and narrow views about computing in CT education
(Denning et al., 2017; Tedre & Denning, 2016).

Abstraction

Abstraction permeates every aspect of computing. It depicts the high-level cognitive
practices that learners use to break down tasks into manageable fragments, modularise
solutions and design their algorithms. The act of ‘assessing abstraction’ often implies
measuring students’ aptitude to demonstrate the use of abstraction in solving problems
holistically (Hill et al., 2008). The centrality of abstraction is apparent in Kramer’s
(2007) description of how none of the 60 course modules in a 4 year Master of
Engineering programme was tailored towards abstraction, yet the programme’s stu-
dents had to apply abstraction to problem-solving in all of its modules. In another study,
Perrenet et al. (2005) were concerned about how well their department’s undergraduate
CS curriculum performed in training students to think like computer scientists. They
equated ‘thinking like computer scientists’ with mastering the level of abstraction that
students demonstrate in designing algorithms. Therefore, the designation of abstraction
as a core and consistent dimension in almost every CT framework is a standard of the
field.

The concept of abstraction has featured in studies of students’ thought processes. For
example, Aharoni (2000) observed a three-level continuum of abstraction at work in the
thinking used by students when programming in a data structure class. From low to
high levels of abstraction, the three elements of the continuum were programming-
language oriented thinking, programming-oriented thinking and programming-free
thinking. Another experiment studied the use of abstraction in an algebra class; Hazzan
(1999) discovered that students coped with new concepts by interpreting them at a level
of abstraction lower than that at which the concepts were introduced, as measured by
the following three-dimensional framing of abstraction:

(a) The quality of the relationship between an object and the thinking person – This
implies that for a given concept (the object), a continuum from the concrete to
the abstract exists, and the level of abstraction observed is not inherent to the
object but rather is a property of the person’s mind; in this dimension, how the
person perceives the level of abstraction will be influenced by the person’s prior
experience of the object.

(b) A reflection of the process–object duality – In this dimension, concepts are
conceived either as a process (low-level abstraction) or as an object (high-level
abstraction).

(c) The degree of complexity of the concept of thought – This assumes that complex
entities are abstract.

Considering these levels of abstraction (Aharoni, 2000; Hazzan, 1999), it is unclear
how to ascertain whether a particular level of abstraction should be deemed a desirable
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learning target. Colburn and Shute (2007) argued that abstraction objectives in CS and
mathematics are ‘information hiding’ and ‘information neglecting’, respectively.
However, this distinction may still not resolve the ambiguity of the levels of abstraction
without the aid of a proper context. For example, how is low-level abstraction to be
understood? According to Hazzan (1999), viewing a concept as a process rather than an
object denoted a low level of abstraction. On this view, achieving a high level of
abstraction (i.e. object representation) was designated the appropriate learning target in
the context of mathematics (e.g. abstract algebra). Yet, in Aharoni’s (2000) investi-
gation of the class on data structures, students developed programming-context
thinking (i.e. programming-language oriented thinking and programming-oriented
thinking), which represented a low level of abstraction. In this different context,
achieving low-level abstraction was a useful learning goal. These analogies reinforced
the need to be wary of ‘across-the-board’ promotion of low-level or high-level ab-
straction. Context matters!

Kramer (2007) illustrated how abstraction could be described through dual lenses –
the decomposition of a task or the generalisation of a pattern. Through the first lens,
abstraction is the process of removing some of the properties of a complex system with
the aim of focusing on the system’s main features. This way of understanding ab-
straction involves a decompositional, top-down, reductionist or modelling perspective
(e.g. the use of maps to create abstractions of complex railway lines). In this mode, the
fine-grained operations of a system or subsystem are hidden, as evidenced in modelling
(Israel et al., 2015). Through the second lens, abstraction is the process of formulating a
general concept by identifying and extracting common features from several instances.
This adopts generalisation or the bottom-up convention in sampling instances to
generate a common theme. Examples of this form of reasoning include the use of data
structures, such as classes in programming, for generalising the properties and be-
haviour of objects, and the creation of a rule for sorting system files, program files and
documents into an appropriate folder structure in the Windows operating system
(Harimurti et al., 2019).

The nature of abstraction has also beenmodelled in other frameworks. These include
the extraction, decontextualisation or essence classes of abstraction (Cetin & Dubinsky,
2017) and the conceptual, formal or descriptive classes of abstraction (Hill et al., 2008).
Although the relevant dimensions have different labels, these abstraction frameworks
are similar in meaning. According to Cetin and Dubinsky (2017), the extraction class
illustrates the practice of finding the common features of an object, the decontextu-
alisation class depicts the representation of concepts in forms that are independent of
their original contexts, and the essence class is associated with formally representing a
concept through decomposition. In the abstraction model created by Hill et al. (2008),
formal abstraction involved the ability to simplify and create symbolic representations,
which is identical to Kramer’s (2007) abstraction form of decomposition and Cetin and
Dubinsky’s (2017) essence class. Similarly, descriptive abstraction focusses on the
ability to construct a generic model by identifying the similarities and differences
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between items in a group of objects, which aligns with Kramer’s (2007) generalisation
class and Cetin and Dubinsky’s (2017) extraction class of abstraction.

Perrenet et al. (2005) conceived abstraction differently, positing four levels of
abstraction that presumably could be clearly distinguished from each other when
computer scientists design algorithmic solutions. These included the execution level
(the algorithm is precisely designed to run on a specific, concrete machine), the
program level (the algorithm is a process designed by focusing on specific pro-
gramming language), the object level (the algorithm is independent of any pro-
gramming language) and the problem level (the algorithm is a black box for solving
different problems with different levels of complexity).

Although Perrenet et al. (2005) framed the levels of abstraction according to a CS
context, the object level and the problem level of abstraction were not restricted to
programming and are therefore suitable for categorising other instances of abstraction.
The non-restrictive and comprehensive design of the four levels of abstraction make it
an ideal model for explaining the patterns of abstraction. In addition, Kramer’s (2007)
description of the nature of abstraction overlapped with the models described in Cetin
and Dubinsky (2017) and (Hill et al., 2008). Therefore, Perrenet et al. (2005) and
Kramer (2007) were invaluable for understanding how abstraction has been oper-
ationalised in the course of reviewing the empirical articles.

Method

We took the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement as a set of guidelines for the framing of our work (Moher et al.,
2009). PRISMA contains sets of items that support researchers in conducting and
reporting quality systematic reviews and meta-analyses.

Identification of Studies

As established in the description of our theoretical framework, abstraction is a complex
concept whose meaning differs depending on the context and knowledge domain. To
contextualise our investigation of abstraction in CT and to maximise our coverage of
the literature, we searched for articles that contained ‘computational thinking’ in their
title, abstract or keywords fields. The enclosing quotation marks were part of the search
term; a schema to restrict the results to exact but case insensitive matches. We ran our
search on three leading research databases: Web of Science (WoS), Scopus and Ed-
ucation Resources Information Center (ERIC). These are key indexing databases for
multidisciplinary educational research, with comprehensive coverage of quality journal
titles and proceedings.

With no further restrictions apart from the search term, the cut-off date for the
literature search was 5th of May 2021. The identification stage yielded 5499 docu-
ments: WoS (n = 2074), Scopus (n = 3010) and ERIC (n = 415). We considered
extending our search results through journal scouring, reference backtracking and
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researcher checking (Alexander, 2020). However, undertaking these procedures with a
collection of 5499 articles was not practical at this stage.

Screening of Documents

With the initial pool of documents identified, we established the inclusion criteria and
embarked on the screening work. Tying back to the research question – how has
abstraction been conceptualised and operationalised in CT – an article was selected if it
reported an empirical study and assessed learners’ abstraction (whether measured as a
standalone construct or a component of CT). The implementation of the inclusion
criteria took place across three sequential screening stages: pre-processing, abstract
screening and full-text screening.

Pre-processing Screening. To conduct a high-quality and practical systematic review,
researchers often need to set reasonable boundaries. Alexander (2020) called these
boundaries ‘delimitations’. For example, the search for eligible articles in WoS, Scopus
and ERIC was the first gatekeeping measure to maximise search coverage without
compromising quality. As the literature search was conducted in three independent
databases, the first pre-processing task was to remove all duplicates. The duplicates (n =
1576) were removed, and the remaining 3923 articles were retained for further
processing.

The quality of the grey literature varied significantly (Rothstein & Hopewell, 2009).
However, disregarding all instances of the grey literature, such as proceedings, might
have introduced publication bias. Therefore, we selected peer-reviewed articles
(whether published in journals or proceedings) and restricted eligibility to English-
language articles published from 2006 onwards. This restriction by year was deter-
mined by the year of Wing’s (2006) seminal modelling of CT as ‘thinking like a
computer scientist’, which was adopted as the conceptual meaning of CT for this
review. This pre-processing screening resulted in the removal of 230 articles and the
remaining 3693 were passed to the abstract screening stage.

Abstract Screening. The first step in the abstract screening process was to exclude
reviews (e.g. Lye & Koh, 2014; Zhang & Nouri, 2019), editorials (e.g. Denning, 2017;
Tissenbaum et al., 2019) and books or book chapters (e.g. Bers, 2017; Yadav et al.,
2017). Based on the document types, 888 articles were flagged for not meeting the
inclusion criteria (i.e. not empirical studies that assessed learners’ abstraction).

The second step was to read the abstracts of the remaining articles (n = 2805). Apart
from not meeting the inclusion criteria, other types of excluded studies were theoretical
discourses, such as teachers’ knowledge in designing and teaching CT in K–6 (Angeli
et al., 2016), the required conditions for implementing CT in schools (Repenning et al.,
2010) and meta-analyses/syntheses (Denner et al., 2019; Scherer et al., 2019). This
process culminated in the exclusion of 2474 articles. The remaining articles (n = 331),
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consisting of 202 journal articles and 129 proceedings papers, were selected for full-
text screening.

Full-Text Screening. This last screening procedure provided a finer layer of inspection –

an important step in assessing the eligibility of articles for cases in which determi-
nations could not be based on abstracts. Specifically, a study was excluded if it involved
neither the definition nor the operationalisation of abstraction. For example, Durak and
Saritepeci (2018) used structural equation modelling to examine the relationship
between CT and learners’ variables, such as thinking style, academic performance and
attitude towards mathematics. Although abstraction was mentioned eight times in their
study, it was neither defined nor was it a component of their measurement instrument,
which used the CT scale created by Korkmaz et al. (2017). Therefore, the study was
excluded. Similarly, studies that measured CT with an instrument that did not identify
abstraction as a component (e.g. Korkmaz et al., 2017; Román-González et al., 2017)
were excluded if such studies did not define abstraction. For example, a study on the
influence of repeated participation in after-school programming on CT (Mouza et al.,
2020) was excluded because abstraction was neither defined in the theoretical dis-
cussion nor assessed in the multiple choice questions, which asked students to match
Scratch blocks to CT concepts. Other studies – such as the use of eye tracking to
investigate developmental differences in CT according to gender (Papavlasopoulou
et al., 2020) – that did not provide additional information on abstraction in their rubrics
were excluded too.

Finally, we scoured the content of journals that appeared more than once in our search
and looked at the publication records of authors who had contributed two or more studies
after full-text screening. All of the identified articles were found in our initial pool. This
could be attributed to the increasing sophistication of database search algorithms and the
use of single-term keywords in searches. Of these 331 articles, 235 studies were excluded
because they did not define or operationalise abstraction. The screening phase culminated
in a list of 96 eligible studies (see Supplementary table) to be charted. Figure 1 sum-
marises the application of this model to identify and screen eligible studies.

Charting and Coding of Data

This stage was the most important stage of the study and required several rounds of
discussion between the authors. Given the number of articles identified for a com-
prehensive review, we charted our data with a spreadsheet. With a focus on the research
question, we captured all relevant information to address the conceptualisation (literary
meaning) and operationalisation (concrete and measurable implementation) of
abstraction.

We were confronted with the challenge of making sense of abstraction from a large
number of studies. Dinsmore et al. (2008) encountered similar difficulties during a
systematic review study, which aimed to disentangle the definitional boundaries be-
tween self-regulation, self-regulated learning and metacognition. Informed by Murphy
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and Alexander’s (2000) definitional coding scheme, which queried the degree of
explicitness used by researchers to define constructs, Dinsmore et al. (2008) coded
definitions into two categories – implicit or explicit. Implicit definition was further
sub-categorised into conceptual definition (i.e. the construct definition was inferred

Figure 1. Flow diagram of search strategies and screening for eligible studies for review
(Inclusion criterion = CT empirical studies assessing learners’ abstraction).
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from original words or phrases in the text), referential definition (i.e. the construct
definition was derived from another work) ormeasurement definition (i.e. the construct
definition was found by use of a measurement instrument).

Although the definitional framework initially appeared to be a promising model for
deconstructing the meaning of abstraction, we encountered some ambiguity as to what
constitutes an explicit or implicit definition in the charting process. Explicitness usually
corresponds to a definition that is clearly stated in a given article. However, we
discovered that some authors defined abstraction by referring to other works. For
example, Basu et al. (2020) defined abstraction as ‘a means of hiding complexity and
building something large by putting together collections of smaller parts’ (p. 914) by
citing Brennan and Resnick’s (2012) CT framework. If this definition had been coded
as an explicit definition, the referential connection to Brennan and Resnick (2012)
would be omitted.

To address this problem, we extended the definitional framework by adding di-
mensionality to the explicitness axis. Using a binary classification (yes/no), the explicit
variable was coded ‘yes’ if and only if the authors of a given study advanced their own
version of abstraction. Similarly, the binary variable written indicated whether meaning
of abstraction was clearly stated in a given article (whether referenced from another
work or devised by the authors). To illustrate the coding scheme – in a study that
detailed the development of CT in a puzzle game, Rowe et al. (2021) defined ab-
straction as ‘the ability to make generalizations from observed patterns and making
general rules or classifications about objects, tasks, or information’ (p. 4). As in this
case the authors put forward their own version of abstraction, this study was coded as
explicit (yes), written (yes) and referential (no). In a similar way, although Basu et al.
(2020) stated the meaning of abstraction in written form, their statement of meaning
depended on a citation of Brennan and Resnick (2012), and this study was therefore
coded as explicit (no), written (yes) and referential (yes).

To understand the concrete and measurable implementation of abstraction in a given
article, we identified the type of instrument used for measurement (e.g. observation,
interview, self-report and performance rating). Following on Kramer (2007), the nature
of abstraction was coded (i.e. decomposition, generalisation, none or both). Finally, we
identified the level/granularity of abstraction represented in the operationalisation; this
categorisation was based on the four-tier abstraction theorised in Perrenet et al.
(2005) – execution level, program level, object level and problem level.

Results and Discussion

Table 1 summarises the features of the charted studies. Only about 23% of the studies
(n = 22) included both conceptual and operational definitions. In our view, for complex
and amorphous constructs such as abstraction, which tend to be open to interpretation,
the probability of the construct being misinterpreted by research audiences will be
significantly reduced when both operational and conceptual definitions are presented in
a given empirical study. However, among the studies that presented conceptual
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definitions (n = 56), an impressive 89% (n = 50) were conspicuouslywritten. Recall that
the written class refers to studies in which definitions were clearly stated in the article
and was a superset of the explicit classification (i.e. written definitions advanced by
study authors themselves). The authors’ efforts to state the conceptual meanings of
abstraction as clearly as possible were desirable, so that audiences are not subjected to
infer the meanings themselves. In the case of operational definitions, it is self-evident
that these had to be inferred from instances of the tasks in the measurement instrument.

The nature of abstraction found in Kramer (2007) showed that researchers are twice
as likely to conceptualise abstraction from the decomposition than from the gener-
alisation aspect. In contrast, the operational definition (i.e. the measurable im-
plementation) showed that the two aspects – decomposition and generalisation – were
often intertwined in tasks that measured abstraction. A certain proportion of the op-
erational definitions could not be clearly associated with either decomposition or
generalisation (29/62; 46.7%). This observation was in line with the initial aims of the
review and showed that the notion of abstraction remained obscure to many re-
searchers. For example, studies (e.g. Garneli & Chorianopoulos, 2018; Munoz et al.,
2018) that measured abstraction as a dimension of CT with Dr Scratch (Moreno-León
et al., 2015), an automatic analytical instrument for Scratch projects, could not be
clearly classified as either decomposition or generalisation. In Dr Scratch, the grading

Table 1. Summary of the Profiles of the Charted Studies.

Study Characteristic Conceptualisation, n (%) Operationalisation, n (%)

Charted studies 56 (58.33) 62 (64.58)
Explicit 19 (33.93) 4 (6.45)
Written 50 (89.29) 4 (6.45)
Referential 30 (53.57) 38 (61.29)
Nature
Decomposition
Generalisation
Both
None/Not clear

28 (50.00)
11 (19.64)
9 (16.07)
8 (14.29)

3 (4.84)
4 (6.45)
26 (41.94)
29 (46.77)

Level
Execution
Program
Project
Problem
None/Not clear

–

–

–

–

–

0 (0)
23 (37.10)
0 (0)
35 (56.45)
4 (6.45)

Measurement types
Performance rating
Interviews
Think-aloud
Self-report

–

–

–

–

55 (88.71)
4 (6.45)
2 (3.23
3 (4.84)
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of abstraction ranked from basic (1 point for projects with more than one sprite and
script), developing (2 points for definitional blocks – similar to creating user-defined
functions) and proficiency (3 points for the use of clones). It was not clear how these
features could be mapped to abstraction. In fact, the developers of Dr Scratch have
acknowledged these limitations and suggested that the tool was intended to provide
formative feedback to improve a user’s coding skills and not as a substitute for the
formal evaluation of coding projects (Moreno-León & Robles, 2015). Although the
centrality of abstraction has been well established in CT theory, its operationalisation
seems to be lagging in studies. This was evident from the fact that several studies were
excluded from the eligible pool due to abstraction being absent from their CT as-
sessment frameworks; especially the case for studies that measured CT with the self-
reporting CT scale of Korkmaz et al. (2017) and the CT test of Román-González et al.
(2017). Another plausible explanation for certain cases of failure to classify operational
definitions relates to the view of abstraction as being inextricably embedded in learners’
CT practices, such as those of programming, and therefore not explicitly measurable.

As shown in Table 1, it was not feasible to classify the conceptualised definitions by
level as described in Perrenet et al. (2005) because these definitions were broad and did
not limit abstraction to specific platforms, programming languages or applications. For
example, in a study that examined the relationship between mental rotation and CT in
primary school students, Città et al. (2019) broadly defined abstraction as the removal
of irrelevant parts of a problem to focus on its core aspects.

For operational definitions, none of the studies implemented abstraction at the low-
execution level. Understandably, any desire for algorithmic solutions that run on
specific machines (i.e. the execution level) seem to be out of sync with recent tech-
nological developments in internetworking and cross-platform operation of applica-
tions. In addition, during data charting, we discovered that the boundary between object
and problem levels was blurry. However, we relied on their commonality of requiring
no programming and classified such studies as being at the problem level. This explains
the absence of any study at the object level.

Four types of measurement emerged from our coding: performance rating, inter-
views, think-aloud protocols, and self-reporting. From the pool of eligible articles,
performance rating (55/62; 88.7%) was the predominant measurement type and
represented the cluster of assessments such as test, Bebras task, rubric/artefact analysis,
automatic artefact analysis and multiple choice questions. Examples included tests of
students’ ability to draw electronic circuits of specific designs (Yin et al., 2019), a
Bebras challenge that investigated the effectiveness of robotics laboratory training in the
development of CT (Chiazzese et al., 2019), a rubric to evaluate whether abstraction was
present in the written solutions submitted by in-service teachers in a CT teacher de-
velopment programme (Kong& Lao, 2019), the automatic analysis of CTwith Dr Scratch
in a CT-based outreach programme for children aged 9 to 14 (Panskyi et al., 2019) and
selecting an option that had the fewest statements while identifying a given picture in a
multiple choice question (Basu et al., 2020).
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All the measures, except performance ratings, were rarely used. We put forward two
plausible explanations for the predominance of performance-based measures over
interviews, think-aloud protocols, and self-reporting. First, researchers believe that
abstraction is most appropriately measured by the output of processes that require
applications of abstraction. Second, the use of interviews and think-aloud protocols
may not have been scalable for empirical studies with large numbers of participants.
Note that this explanation should be interpreted in the context of this review alone,
which excluded from the final pool, studies that assessed CT but omitted abstraction as
a factor.

Disentangling the Conceptual Definitions

Abstraction as a Form of Decomposition. Based on Kramer’s (2007) dichotomous
classification of abstraction into decomposition and generalisation, about 50% of the
conceptual definitions considered abstraction solely as a form of decomposition ac-
tivity. For example, in their investigation of the influence of educational robotics on the
development of CT, Atmatzidou and Demetriadis (2016) described abstraction as a
process of simplifying complex entities by focusing on their relevant features. Taken
together, these studies tended to identify the main activities of decomposition as (a)
identifying the relevant and irrelevant details (attributes, characteristics, features, as-
pects, parts) of an entity (e.g. Kert et al., 2020; Wang et al., 2014), (b) obscuring or
removing an entity’s irrelevant details (e.g. Angeli & Valanides, 2019) and (c) focusing
on only the relevant or important details of an entity (e.g. Wu & Su, 2021). The
resulting solutions have often been depicted through new representations such as
creation of models and simulations (Jaipal-Jamani & Angeli, 2017; Mendoza Diaz
et al., 2020). Judging by this literature, the overarching purpose of abstraction as a
decomposition process converges in the simplification (reduction of complexity) of a
system. This is consistent with the description of Selby andWoollard (2013) in a review
of the most frequently occurring terms of CT.

Abstraction as a Form of Generalisation. Unlike the cases of decomposition, abstraction in
the form of generalisation involved (a) identifying the underlying rules or patterns that
controlled the behaviour of entities/processes (e.g. Basu et al., 2018; Wu et al., 2019)
and (b) developing general rules for entities/processes rooted in the discovered patterns
(e.g. Rowe et al., 2021). Although the generalisation approach tended to focus on
creating general rules from concrete observations (Barr & Stephenson, 2011), the core
purpose converges to simplification, which was also the case for decomposition.

The Intersection of Decomposition and Generalisation. Although our investigation used
Kramer’s (2007) dichotomous classification of abstraction into decomposition and
generalisation, researchers’ definitions of these two categories have often overlapped.
For example, in validating a CT instrument for grades 4–6, Basu et al. (2020) defined
abstraction as obscuring complexity and creating a generic representation by
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identifying patterns within entities. Similarly, Asbell-Clarke et al. (2021) explicitly
defined abstraction as ‘generalizing from observed patterns and making general rules or
classifications about objects, tasks, or information by discerning relevant from irrel-
evant information’ (p. 2). These definitions show how abstraction has often depended
on both decomposition and generalisation spaces. Hiding the complexity of a system
and distinguishing between the core and peripheral components of a problem are
elements of decomposition activities. Meanwhile, the generalisation wing conceived
abstraction as a process of observing groups of objects, identifying patterns and
creating classifications or rules.

In a similar vein, in Bebras challenges (Dagienė & Sentance, 2016), each task is
classified as measuring one or more CT skills, including abstraction, as conceptualised
in Selby andWoollard (2013). According to Dagienė and Sentance (2016), Bebras tasks
are classified as abstraction if the learners distinguish between their important and
trivial components and make sense of similarities between structures in completing
them. The realization of abstraction as a combination of decomposition and gener-
alisation also featured in a study that compared the development of abstraction in
objected-oriented and robotics programming activities (Çınar & Tüzün, 2020). The
meaning of abstraction in this study was determined according to both formal and
descriptive classes of abstraction (Hill et al., 2008). Formal abstraction referred to the
ability to simplify and create symbolic representations (identical to the decomposition
approach) while descriptive abstraction referred to the ability to construct a generic
model by identifying the similarities and differences between groups of objects (similar
to the generalisation approach).

Contrasting Interpretations. As noted in our statement of objectives, this review revealed
certain intricacies in the conceptualisation of abstraction that researchers in this area
ought to know about. First, the core purpose of abstraction was to simplify processes
and outputs, especially in cases where the resulting entity was large. This objective was
aptly captured in the description of abstraction as ‘a strategy to make problems or
systems easier to think about’ (Chen & Chi, 2020, p. 8). However, simplifying complex
entities does not necessarily mean creating small replicas of given entities. In fact, Basu
et al. (2020) referred to abstraction as ‘building something large’ (p. 8) by hiding the
object’s complex parts and aggregating its smaller parts.

Second, the implied narrative of abstraction often seemed to suggest that ‘more
abstraction is better’. However, this has not always been the case. In Price and Price-
Mohr (2018), decreasing abstraction was the preferred learning goal in an exploratory
study that evaluated the differences between novice and expert processes of Java
programming. There, abstraction was described as the level of polymorphism used in
overloading a method. In other words, adding more arguments to the declaration of a
method meant ending up with less abstraction. In this scenario, abstraction was de-
picted as vagueness that needed to be reduced by providing more information as the
input of a process. Of course, the overall goal of method overloading is to simplify
programs by providing alternative methods for objects with different input parameters.
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Although these different views of abstraction were conceptually aligned to simplifying
the design of systems, this observation reinforced the need to understand the contest of
abstraction.

Therefore, in our view, abstraction should not be limited to a specific set of activities
but rather should be understood as the summation of cognitive activities whose
common goal is the simplification of systems, which may include decomposition and
generalisation.

Fitting Other Definitions of Abstraction. Some of the definitions of abstraction in our
review did not fit the decomposition-versus-generalisation abstraction mould. In this
section, we highlight other definitions that the authors presented to support their
studies.

Problem formulation – Newton et al. (2020) described abstraction as the sum of
activities that learners engage in to formulate solutions to problems before coding.
According to Newton et al. (2020), students are abstracting when they make decisions
about the behaviour of agents in game design before the actual coding. These prior-
to-coding activities could take diverse forms, including the decomposition and gen-
eralisation of behaviour. In this conceptualisation, abstraction stood out as the sum of
cognitive planning and was distinct from writing computer code.

Data storage and manipulation – In Grover et al. (2015), abstraction was defined as
the transformation of real-world data into variables and the use of functions to find
manageable solutions to problems. This view was similar to the notion of abstraction as
a process of storing and manipulating data (Looi et al., 2018).

Program testing and verification – Deng et al. (2020) defined abstraction as the
ability to test and verify computer programs with programming tools, and Sulistiyo and
Wijaya (2020) described abstraction as the design of correct mathematical represen-
tations of problems.

The Operationalisation of Abstraction

In this section, we highlight six ways in which abstraction was operationalised in the
selected articles. Noticeably, studies that implemented abstraction via Bebras tasks
generally did not fit in any one of these categories. Although the underlying con-
siderations for abstraction tasks in Bebras are well defined, the variability of tasks
across studies (e.g. Baek et al., 2019; del Olmo-Muñoz et al., 2020) limited their
classification into a particular theme.

The Sophistication of Programming Concepts. Some authors operationalised abstraction as
a measure of the presence and frequency of certain programming concepts. For ex-
ample, in using Scratch and Alice to assess the CT skills of students, Allsop (2019)
designed a rubric whereby abstraction could be measured on a scale of 0–2 for the
presence of methods/functions and event handlers in students’ artefacts. The use of
built-in methods/functions and simple event handlers received a score of 1, whilst

892 Journal of Educational Computing Research 60(4)



artefacts that contained user-defined methods/functions and sophisticated event han-
dlers received a score of 2. When these programming concepts were entirely absent
from a student’s artefact, a score of 0 was assigned for abstraction.

However, the programming concepts associated with abstraction were not consistent
in other implementations. By default, studies that measured CT with Dr Scratch
(Moreno-León et al., 2015) relied on the presence of certain programming concepts and
were different from the features in Allsop (2019). In Dr Scratch, abstraction was
operationalised on a scale from 1 to 3 for the presence of two or more scripts and sprites,
the use of definition blocks (equivalent to user-defined functions) and the use of clones,
respectively. If these features were entirely absent, a score of 0 was assigned for
abstraction.

The sophistication of programming concepts was used as a measure of abstraction in
studies that used platforms other than Scratch and Alice. Using AgentCubes, a three-
dimensional simulation authoring system from the scalable game design project
(Repenning et al., 2015), Leonard et al. (2016) investigated the influence of robotics
and game design on middle school students’CTskills. They associated abstraction with
the creation of unique games containing novel actors/agents. In ascending order,
abstraction was graded as emerging (1 point) if the agents and backgrounds resembled
the lesson demo. A moderate grade (2 points) was assigned if a student only created
agents or backgrounds. A student received a substantial grade (3 points) if both agents
and backgrounds were new.

A similar operationalisation was adopted in a study that examined how students
develop CT in informal learning environments (Newton et al., 2020). However,
Newton et al. (2020) extended the implementation of abstraction as a measure of the
usage levels of conditionals (i.e. whether a conditional such as an ‘if statement’ was
unclear, a single-condition comparison or a multiple-conditions comparison). Corral
et al. (2019) operationalised abstraction as the number of stored procedures (equivalent
to user-defined functions/methods) in a project. The authors associated abstraction with
the software engineering metric. Whether in Scratch, Alice, AgentCubes and even the
software metric, the underlying measured concepts associated with abstraction were not
consistent.

Matching Patterns. Extracting patterns that existed both within a process and between
objects was a common implementation of abstraction in the reviewed studies. In
Atmatzidou and Demetriadis (2016), students were asked to find examples of behaviour
common to two robotics programs as a measure of abstraction. Calderon et al. (2020)
also examined students’ abstraction ability by challenging them to find commonalities
between objects in opposite stacks of the Tower of London test (Shallice et al., 1982) – a
test of executive functioning in which six boxes are drawn on the left and another six
boxes on the right. Another instance of pattern matching assessed abstraction as
students’ ability to select the fewest statements that distinguished a specific picture from
others (Basu et al. (2020).
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For students aged 6 to 8, Kanaki and Kalogiannakis (2019) measured abstraction as
their ability to identify animals that live in their geographical region by selecting the
correct images on a worksheet. The task’s design was informed by the belief that
abstraction is linked to the ability to identify common patterns in sets of entities.
Similarly, Rijke et al. (2018) paired up students in a card guessing game to investigate
the interaction of age in the development of abstraction in primary school students. The
first student sketched the concrete nouns in a deck of cards. Without revealing the cards,
the second student was tasked to guess the word from the sketches. According to Rijke
et al. (2018), high-quality sketches tended to focus on the essential features of the
common noun, and abstraction was determined according to the number of correct
guesses that students achieved with their sketches. Another illustration of abstraction as
the ability to match patterns was found in a study that explored the relationship between
programming environments and CT in students aged 10 to 12 (Wu & Su, 2021). These
students were asked to distinguish important components from irrelevant details by
selecting the peripheral item in multiple choice questions.

In summary, the focus on pattern revealed its association with abstraction, which
was conceptually found to be a key practice in generalisation.

Creating Alternative Representations – Modelling and Simulation. Abstraction was also
operationalised as the ability of students to create alternate representations of a
problem, which is consistent with the definition of abstraction proposed by Jaipal-
Jamani and Angeli (2017) as the modelling and simulation of problems. Kong and Lao
(2019) demonstrated this aspect of abstraction in assessing in-service teachers’ CT
skills in a teacher development programme. The participants were presented with a
pictorial representation of counters in a supermarket. For each counter, the average
queueing time and number of customers were provided. Abstraction was assessed as the
ability to capture the number of customers queueing at each counter, design mathe-
matical representations to calculate their total queueing times and develop a generic
algorithm for comparing the counters and finding the fastest of them.

Alternative representations take different forms and are not limited to mathematical
formulas. In a physics and engineering class, Yin et al. (2019) framed abstraction as the
ability to draw electronic circuit diagrams for a given design. In their exploration of
ways to develop and assess integrated CT skills, they reasoned that representing the
design through electronic circuit diagrams elicited students’ abstraction ability irre-
spective of the maker activities, whether e-textile, breadboard, Makey-Makey or
Arduino.

Transfer of Problem Solutions. Abstraction was operationalised as the ability to use
solutions from past experience to solve new sets of problems with similar structures
(Lee et al., 2014). Relying on children’s natural interest in game playing and the
affordances of puzzle games in developing CT, Lee et al. (2014) demonstrated that
children can conceptualise their game play into formal algorithmic rules (i.e. explaining
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moves and ties in the game). Hence, the students demonstrated abstraction if they could
rely on the explicit rules acquired on the game platform for their future game play.

Measure of Learner Activity. Abstraction was assessed as the percentage of game space
that a learner completed when playing a puzzle game in a large-scale study involving 45
classes that examined the influence of game play on the development of CT (Asbell-
Clarke et al., 2021; Rowe et al., 2021). The metric was informed by the view that
identifying the puzzle game’s underlying rules and the ability to extend the pattern to
the rest of the game were causally related to the amount of space a player covered.

Identifying and Reading Program Code. Abstraction was also associated with the ability of
students to explain the code that controlled the actors in a study that explored the impact
of teaching CT using Agile software engineering methods (Fronza et al., 2017). At the
end of the programme, the students were interviewed about their choice of actors,
behaviour and code organisation. They received maximum points when their de-
scriptions were specific. An average number of points was assigned for more general
descriptions. Students who were unable to provide explanations received a low number
of points. A similar approach was applied when abstraction was linked to the students’
ability to determine the behaviour of a program from a screenshot in Scratch (Gillott
et al., 2020).

Levels of Abstraction

Perrenet et al. (2005) identified four levels of abstraction in designing algorithmic
solutions. However, as reported in the section Profiles of Charted Studies, none of the
reviewed studies implemented abstraction at the low-execution level. In addition, apart
from the shared characteristic of requiring no programming, the boundary between
object and problem levels was blurry. Therefore, the implementation of abstraction in
the reviewed articles was best classified into two categories – program and problem
levels of abstraction.

Program-Level Abstraction. Abstraction at this level of granularity required learners to
use a specific programming language to demonstrate their solutions. Examples in-
cluded the investigation of students’ algorithmic solution design in Scratch and Alice
(Allsop, 2019) and the use of the Lego Mindstorms programming software in solving
programming problems (Atmatzidou and Demetriadis (2016). Although 37.1% (n = 23)
of the operational definitions of abstraction were classified at the program level,
implementations based on text programming were visibly absent. The number of
studies in this category was significant and diminished the differences between CT and
programming. However, in comparison to the number of studies that implemented
abstraction at the problem level (35/62; 56.45%), the result revealed a positive trend of
dissociation of abstraction in CT from the strictly technical perspective of
programming.
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Problem-Level Abstraction. Unlike the program level of abstraction that ran algorithms in
a specific programming language, the problem level was independent of any platform
or language. Asbell-Clarke et al. (2021) regarded abstraction as the percentage of space
a player covered in a puzzle game. This represented the problem level of abstraction, as
the algorithmic pattern of covering more space in the game existed as a black box.
Similarly, the studies that operationalised abstraction through Bebras tasks, such as the
investigation of the effects of an after-school robotics programme on the development
of CT in primary school students (Baek et al., 2019), did not require knowledge of any
programming language.

Conclusion

We embarked on this review with the goal of disentangling the conceptual and op-
erational definitions of abstraction – the core component of CT. How have researchers
defined abstraction in empirical studies? To highlight the educational implications of
this review, it is important to acknowledge its limitations. Our focus on studies that
measured abstraction or presented a conceptual definition of abstraction when mea-
suring CT invariably excluded reviews and theoretical studies. Although our decision
to impose these limitations was guided by the goal of finding operational definitions of
abstraction, we acknowledge that it is possible that some important indicators of
abstraction might have been omitted. In addition, interventions in CT empirical studies
measuring learning outcomes other than CT, such as learners’ disposition, were po-
tential sources for further understanding abstraction. Therefore, identifying operational
definitions of abstraction solely in studies that assessed learners’ abstraction may have
affected the validity of our conclusions.

Despite these limitations and restrictions, we believe that we unearthed valuable
information for our research programme and dispelled some of the conceptual haze
around abstraction, which other researchers both within and outside the CT/CS do-
mains may find useful. Figure 2 presents the main aspects of abstraction from the
reviewed articles. The ability to identify and break down entities or processes (whether
concrete vs. abstract or top-down vs. bottom-up) into their constituent components was
found to be the root of abstraction. Instances of abstraction often did not fit neatly into
decomposition or generalisation categories. Instead, extracting relevant features,
discovering underlying patterns, creating classification rules and assembling the parts
together are the core actions of learners in abstraction. At the very top of Figure 2 is
simplification, which has been identified as the main purpose of abstraction.

The heterogeneity of words is a feature of human interaction. People describe
phenomena from various perspectives; in turn, the multiplicity of descriptions leads to a
deeper understanding. From the results of this review, the complexity of abstraction and
the pros of the wide range meanings of abstraction are obvious. Moreover, the diverse
ways in which abstraction has been modelled in the reviewed literature revealed that it
cannot be described by any narrow set of activities. When conceiving this study, one of
our initial objectives was to probe whether authors’ definitions of abstraction were
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aligned with their operationalisation. We abandoned that pursuit once it became clear
that this alignment was hazy and difficult to establish. Future studies should con-
scientiously attempt to explicitly align both the conceptual and operational definitions
of abstraction (and other CT constructs). Irrespective of how the researchers conceived
abstraction, we believe that the definitions authors projected should be aligned to the
ways it was operationalised. The importance of this alignment applies not only to
abstraction but also to other constructs. For example, it was a similar concern about

Figure 2. Summary of the core activities and purposes of abstraction.
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self-regulation and metacognition that led Dinsmore et al. (2008) to investigate the
alignment of the constructs in their systematic review.

Finally, behind the research question that underpinned this systematic review was a
humble need to know. The findings reflect what we discovered about abstraction in the
empirical studies reviewed. Although we have our own theoretical orientation, which
may or may not be consistent with some of our findings, the purpose of the study was
never to determine the rightness and wrongness of the operationalisation of abstraction.
Rather, these findings can serve as a reference for future studies, to help other re-
searchers understand how abstraction has been implemented. Understandably, there
could be some doubts as to whether certain forms of operationalisation, such as the use
of programming concepts and learner activities, can actually model abstraction.
Therefore, future research should investigate whether it is reasonable to consider these
operational models as capable of measuring abstraction reliably.
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