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Abstract

Computational thinking (CT) refers to a range of problem-
solving skills applicable to computer science and everyday life.
Although recent research in developmental cognitive science
suggests mental capacities relevant to CT may emerge quite
early in life, research on CT, and computer science educa-
tion more generally, has made little contact with this litera-
ture. As a way to better bridge these fields, we explore the
development of problem decomposition, a critical feature of
CT, in the spatial domain. We ask whether young children
can break a complex spatial problem down into subcompo-
nents that can be reassembled to solve the overarching prob-
lem. Across two experiments (Exp.1: 4- to 7-year-olds; Exp.2:
3- to 5-year-olds) that involve constructing block structures,
we demonstrate that some of the key capacities underlying
problem decomposition begin to emerge in preschool years and
develop throughout early childhood. Although preschool-aged
children struggle to solve an open-ended decomposition prob-
lem that requires generation and execution of decomposition
plans, even 4-year-olds can successfully evaluate the viability
of these plans. These results suggest that experimental meth-
ods in developmental cognitive science can inform CS edu-
cation research that focuses on promoting CT; by identifying
when and how CT concepts emerge in early childhood, we can
better create age-appropriate educational tools.
Keywords: computational thinking; problem decomposition;
problem solving; cognitive development; intuitive physics

Introduction
The ability to break down a large problem into smaller parts
is important for many real-world tasks. To decompose a prob-
lem effectively, one must understand its constraints, generate
potential solutions, and evaluate the strengths and weaknesses
of those solutions. Importantly, these steps are often better
taken before one actually acts; attempts to achieve a complex
task without proper planning can lead to unnecessary effort to
correct a mistake or even irreversible failure. But what does
it take to be good at problem-solving and planning?

More than a decade ago, Wing (2006) popularized the con-
cept of computational thinking (henceforth CT). CT is a term
that collectively refers to a range of skills that are crucial to
effective problem-solving, and it incorporates various cogni-
tive strategies considered fundamental to computer science
(CS) (Wing, 2006; Barr & Stephenson, 2011; Brennan &
Resnick, 2012). Mental activities like abstraction (i.e., gen-
eralizing problem features to preserve only relevant informa-
tion; Kramer, 2007) and problem decomposition (i.e., break-
ing a complex problem into solvable subcomponents; Barr &
Stephenson, 2011) are key components of CT. Indeed, these
skills are critical to building good computer programs; any-
one who has engaged in programming understands the impor-
tance of abstracting away from a problem to identify its basic

structure and decomposing that structure into solvable parts.
Yet, the importance of CT reaches far beyond program-

ming (Wing, 2006). Abstract thinking, problem decomposi-
tion, and the ability to evaluate potential plans are skills that
allow us to tackle a range of everyday tasks as well as larger,
more complex problems that involve multiple sub-goals, such
as conducting scientific research or building an architectural
project. In particular, to successfully achieve these larger
goals, one must: (1) represent the current state of the world
(i.e., what does the empty lot look like?, what materials do we
have?) as well as the state of the desired end-goal (i.e., what
do I want to build?), (2) identify the units that comprise the
end goal (i.e., what sub-goals should I complete?) and con-
struct the possible future states from applying these units (i.e.,
what will the structure look like given these components?),
and (3) evaluate the viability and effectiveness of different
sets of potential units and interventions (i.e., should we build
the columns or the roof first?, which size columns are most
suitable?). In other words, effective problem-solving involves
the representational and inferential abilities to generate pos-
sible ways to decompose the problem space and evaluate the
viability of a potential decomposition plan. By engaging in
these mental processes prior to executing a given plan, one
can solve a problem with less trial-and-error.

While CT has been a useful construct to raise awareness of
the relevance of these skills in both computing and everyday
life, it remains a difficult concept to operationalize or mea-
sure. This difficulty may arise from the fact that CT is not
a single thing; it is a collection of various mental operations
whose cognitive mechanisms are poorly understood. Further-
more, although CT presumably involves reasoning abilities
that have been topics of interest in cognitive development re-
search, this body of work has remained rather disconnected
from the literature in CS education, leading many CS educa-
tors to believe that CT develops relatively late in childhood
(Guzdial, 2015). Our goal is to take a step towards synthesiz-
ing these fields, and build on prior work to ask whether the
ability to decompose a complex problem—a key component
of CT—is present early in life. In the following, we summa-
rize related work on young children’s inferential capacities
and introduce a novel task for testing problem decomposition.

Prior work in cognitive development has revealed rich, so-
phisticated abilities in young children to engage in abstract
reasoning and learning (Gopnik, 2012; Schulz, 2012). Al-
though these studies are primarily aimed at identifying the
developmental origins of the human ability to engage in sci-



entific thinking, collectively their findings suggest that the
basic representational and inferential capacities supporting
CT may emerge much earlier than previously thought. For
instance, preschool-aged children construct novel hypothe-
ses from observations via inductive generalization and design
novel experiments to test these hypotheses by engaging in se-
lection and isolation of relevant variables (Cook, Goodman,
& Schulz, 2011; Legare, 2012). These abilities are founda-
tional to successful problem solving.

Furthermore, CT involves the understanding that good
plans achieve a goal effectively and efficiently. Evidence
suggests the rapid development of planning abilities between
ages 4 and 6, including an increase in the number of steps
children can plan ahead to solve a problem (Klahr & Robin-
son, 1981) and improvements in the ability to deploy appro-
priate strategies depending on the task (Gardner & Rogoff,
1990). Prior work has also shown that even infants expect
rational agents to act in ways that minimize cost (Gergely,
Nádasdy, Csibra, & Bı́ró, 1995; Scott & Baillargeon, 2013),
and they infer the reward an agent assigns to a goal based on
the cost incurred to achieve it (Liu, Ullman, Tenenbaum, &
Spelke, 2017). By age 5, children can even design informa-
tive experiments to infer the subjective costs or rewards of
achieving a goal (i.e., an agent’s competence or preferences)
by systematically manipulating the objective rewards or costs
of completing a task (Jara-Ettinger, Gweon, Tenenbaum, &
Schulz, 2015; see Jara-Ettinger, Gweon, Schulz, & Tenen-
baum, 2016 for a review). Collectively, these early-emerging
capacities to generate and test hypotheses, engage in advance
planning, and reason about efficiency suggest that the basic
aspects of CT may emerge earlier than commonly believed.

Building on this prior literature, we designed a novel block-
building task to study one of the key components of CT:
problem decomposition. Block-building tasks are familiar
to young children, and have historically been considered a
useful domain for studying the development of planning and
problem-solving. Block construction has been shown to be an
indicator of early spatial skills (e.g., mental rotation, Brosnan,
1998), which correlate highly with later success in program-
ming and STEM (Cooper, Wang, Israni, & Sorby, 2015; Ver-
dine et al., 2014; Wai, Lubinski, & Benbow, 2009). Thus,
studying children’s ability to generate and execute an effec-
tive block-building plan can provide a unique window into
understanding the early development of CT. Yet, prior work
is largely limited to exploring childrens bottom-up building
processes, allowing them to build the target structure in a
piecemeal manner. Whether or not children can engage in
top-down problem decomposition remains an open question.

A key strength of our task is that it requires more than
merely copying a model block structure: children must figure
out a viable plan within the constraints of the task by decom-
posing the structure into appropriate parts. In simple block-
building tasks, one might succeed by accumulating raw ma-
terials (i.e., individual blocks) in a piecemeal fashion. Sim-
ilar to the ways beavers or birds build their dams or nests, a

child could repeatedly stack blocks to create a tower. How-
ever, imagine a child wants to build a structure resembling the
bridge in Figure 1. Simply accumulating individual blocks
isn’t sufficient; the child must first assemble the “legs,” and
then place a horizontal bar on top. If a child starts by creating
“pillars” that are as tall as the bridge itself (3 blocks), then a
single block in the middle would not stay in place. This exam-
ple demonstrates how a bottom-up building process can be in-
sufficient even for seemingly simple tasks. Rather, this prob-
lem resembles the way that we approach larger, real-world
engineering projects; we must take the desired goal, break it
into smaller problems, and determine how those components
should be solved and assembled within the constraints of the
task. Thus, the goal in designing our task was to provide a
context in which children would approach a complex problem
in a similar manner under clearly defined task parameters.

Recent work demonstrates that both adults and children
leverage intuitive physics when evaluating the stability of
block structures (Battaglia, Hamrick, & Tenenbaum, 2013;
Kamps et al., 2017; Yildirim, Gerstenberg, Saeed, Tous-
saint, & Tenenbaum, 2017), that children as young as 4
can gauge the difficulty of building such structures (Gweon,
Asaba, & Bennett-Pierre, 2017), and that they are capable
of copying a model block structure when given the required
pieces (Cortesa et al., 2018). Critically however, start-to-end
construction requires intelligently generating those pieces as
well. Computational models optimized to generate instruc-
tions for the construction of block structures identify struc-
tural components while accounting for the effect of gravity on
future layers (Zhang, Igarashi, Kanamori, & Mitani, 2017).
However, the ability to determine the required subcompo-
nents based on an intuitive understanding of task-specific
constraints has not been tested in young children, even though
such ability might provide the key foundation for a more gen-
eral ability to engage in problem decomposition.

In Experiment 1, we embedded the process of generating,
evaluating, and executing an appropriate decomposition plan
into a fun, engaging block-building task. Given a target struc-
ture, children had to identify the underlying substructures,
simulate ahead to determine if those substructures could com-
bine into a self-supporting building, and then execute this
plan to complete the task. In Experiment 2, we use a sim-
plified version of the task to ask whether young children’s
difficulty in Experiment 1 comes from the process of gener-
ating a plan with the appropriate subcomponents, rather than
the process of evaluating the viability of a given plan by en-
gaging in physical simulation.

Experiment 1
Methods
Participants A total of 112 children (Age: 4.00–7.99) were
recruited from a local children’s museum and a university-
affiliated preschool (38 4-year-olds: M = 4.56 (4.04–4.99); 31
5-year-olds: M = 5.43 (5.01–5.96); 23 6-year-olds: M = 6.49
(6.14–6.99); 20 7-year-olds: M = 7.61 (7.08–7.99)). They



were randomly assigned to either the Standing Bridge condi-
tion (N=62) or the Sideways Bridge condition (N=50). We
planned to recruit at least 40 children in each condition who
successfully completed the task (10-12 in each age group).
Twenty-nine children were unable to accomplish the task,
and the successful subgroup included N=42 in the Standing
Bridge condition and N=41 in the Sideways Bridge condi-
tion. An additional 20 participants were dropped from analy-
ses because they: (1) did not speak English (N=3), (2) ended
the study early (N=7), (3) failed the warm-up task (N=6, see
Procedure), or (4) the experimenter made an error (N=4).

Stimuli For the main test trial, the model bridge was com-
prised of seven one-inch wooden cubes (three across the top
and two on each side as supports) painted metallic silver.
In the Standing Bridge condition, this bridge was presented
upright, and in the Sideways Bridge condition, it was lying
down (see Fig. 1). Children were given 3 individual un-
painted wooden blocks with which they could create sub-
structures using a “magic box.” The magic box (see Fig. 1)
was a cardboard box covered in felt with a small coin slot and
an output window. A wire connected this box to the “con-
struction zone” (a flat piece of foam core covered in black
felt) and a large plastic button, suggesting they were all part
of one causal mechanism. A coin was required each time the
child operated the magic box to create a substructure. Inside
the box were pre-assembled metallic structures. For the main
task, where children had 3 individual blocks, there were 4
possible configurations of shapes that children could make;
we prepared 4 metallic structures for each shape for a total of
16. We included additional structures for the practice trials.

Procedure Children were introduced to the experimenter’s
“magic box” which could turn a set of one-inch wooden
blocks into larger, metallic blocks of varying shapes. The
child had to first build a structure on the construction zone
using individual wooden blocks; after putting a coin in the
slot, children could press the plastic button to generate a sin-
gle metallic block that had the same shape as the structure
on the construction zone. In reality, when the child operated
the magic box, the experimenter surreptitiously reached into

Figure 1: Left: Experimental setup. A) magic box, B) coin
slot, C) output window, D) 1” wooden blocks, E) construc-
tion zone, F) plastic button; Right: Standing bridge (top) and
sideways bridge (bottom).

the box through a hidden opening, found the corresponding
metallic block, and placed it in the magic box output window
(see Fig. 1). From the child’s view, this created the illusion
that the child’s button press operated the magic box to gener-
ate the metallic structures.

A brief warm-up task ensured that the child understood the
purpose of the main task and how to operate the magic box.
In the warm-up, the child was given four wooden blocks, and
was asked to build a 4-block ‘T’ shape (Trial A), a 3-block
‘L’ shape (Trial B), a single block (Trial C), and an 8-block
cube (2x2x2) composed of two 4-block squares (Trial D). We
excluded children who failed to complete this pretrial task
from subsequent analysis to ensure that all children included
in the study understood the magic box paradigm and were
able to use the magic box to build metallic block pieces.

In the main task, children were asked to build a bridge us-
ing the blocks and the magic box. Critically, children had
only three wooden blocks such that the metallic blocks they
could build using the magic box was limited to a particular
set of shapes. They were also given 11 coins; this limited the
number of possible times children could generate a metallic
structure, providing a pressure to solve the task efficiently.

In the Standing Bridge condition, the upright bridge was
subject to the forces of gravity, and thus required a specific
block set and assembly sequence (i.e., set up two 2-block
bases and place a 3-block horizontal bar on top). The Side-
ways Bridge condition was identical to the Standing Bridge
condition except that the bridge was laid flat (and thus not
subject to the force of gravity). While the task still forced
children to decompose the structure, there were multiple pos-
sible solutions and the order of construction did not matter.
Thus, the Sideways Bridge condition still required the ability
to follow task instructions, create parts, and assemble the final
structure. However, the need to engage in advance planning
to generate the “correct” decomposition plan and evaluate its
viability was not as critical for success.

The children were given up to 10 minutes to build the
bridge, after which the experimenter stepped in to help and
ended the study. Often the child got stuck (signaled by asking
for help or a period of inactivity) or distracted, so to encour-
age the child to reengage, the experimenter offered one of two
pre-scripted prompts. Additionally, after an extended period
of inactivity or running out of coins, children were given the
option of restarting the task in the remaining time.

Results and Discussion
This was an exploratory study to see whether children could
engage in effective problem decomposition, rather than a test
of a priori hypotheses. However, we could imagine seeing a
few general trends in the data. First, we expected that children
would become more successful and more efficient at com-
pleting the task with age. We measured efficiency using two
different metrics: completion time (in seconds) and number
of coins used (3 was the minimum). Second, independent of
increasing performance with age, we also expected that chil-
dren would perform better (i.e., higher success rate, as well



Figure 2: (A) Success rate in each age bin and in each condition. (B-C) Time-to-completion (B) and number of coins used to
complete the task (C) among the successful children, split by age and condition. Error bars: bootstrapped 95% CI.

as more efficient completion) in the Sideways Bridge condi-
tion than the Standing Bridge condition, because the Stand-
ing Bridge had just one viable 3-part decomposition solution.
Third, we predicted an age by condition interaction; the con-
dition difference would decrease with age as children become
more proficient at finding solutions without trial and error.

A logistic regression with condition (discrete) and age
(continuous) confirmed a relationship between age and suc-
cess rate (z = 2.41, p = 0.02). However, we did not see a
significant effect of condition (z = 0.47, p = 0.64) nor an in-
teraction between age and condition (z =−0.73, p = 0.47).

Given the increase in success rate with age, we further an-
alyzed data from the 83 successful children to see if chil-
dren become more efficient problem-solvers with age. First,
we looked at time-to-completion; a linear regression with
both age (continuous) and condition (discrete) as predictors
showed that older children take a shorter amount of time to
complete the task (t = −4.47, p < .001). While children
in the Sideways Bridge condition did not complete the task
faster than those in the Standing Bridge condition (t =−1.73,
p = 0.09), we did find an interaction between age and condi-
tion. However, the effect was in the opposite direction than
we had initially predicted: the difference in completion time
between conditions increased with age (t = 2.06, p = 0.04).

Another measure of efficiency—the total number of coins
used—also showed a similar pattern. A linear regression on
the 83 children who successfully completed the task revealed
that the number of coins children used to complete the build-
ing task decreased with age (t =−3.14, p = .002); also con-
sistent with time-to-completion, we did not find an effect of
condition (t = −1.49, p = .14) but the difference between
conditions increased with age (t = 1.96, p = .05).

We then looked at the proportion of children who com-
pleted the task with maximal efficiency (i.e., successfully
building the bridge using just 3 coins). A logistic regression
with condition and age showed an effect of age (z = 3.61,
p < .001). Children were also more likely to perform op-
timally in the Sideways Bridge than in the Standing Bridge
condition (z = 2.08, p = 0.04), and this tendency increased
with age (age by condition interaction, z =−2.54, p = 0.01).

Overall, data from this exploratory study showed a few
notable patterns. First, unsurprisingly, children became
more successful and more efficient at solving the task with
age across a number of measures: success rate, time-to-
completion, and number of coins used to finish the task.
These results are consistent with prior work showing that the
ability to plan ahead to solve problems develops rapidly dur-
ing preschool years. Second, we also found that the pro-
portion of children who finished the task with maximal ef-
ficiency varied across conditions. This pattern is also rea-
sonable given that the Standing Bridge required a more prin-
cipled, planned approach for success; due to the constraint
of gravity, there was only one viable decomposition solution
whereas the Sideways Bridge could be built in a few differ-
ent ways. Third, we found an age by condition interaction
in measures of efficiency (time-to-completion and number
of coins used); however, the difference between conditions
in efficiency increased with age, rather than decreasing with
age. In other words, only the older children showed the ex-
pected difference between conditions. This suggests that the
task was generally quite difficult for young children; even
though 4- and 5-year-olds still successfully passed several
practice trials and understood the task instructions, many of
them struggled to complete the task in both conditions.

Collectively, these data provide an informative window
into how children engage in problem decomposition to solve
a complex task. Older children’s near-perfect performance in
the Sideways Bridge condition suggests that they were able to
create substructures and use them to assemble the bridge cor-
rectly. Thus, the primary challenge children faced in this task
may have been identifying and generating a plan to construct
the “correct” components prior to building, especially when
there was just one solution (Standing Bridge condition).

The fact that younger children struggled in both conditions
raises questions about whether preschool-aged children suffer
from a genuine lack of ability to engage in problem decom-
position. However, the results do not allow us to directly ex-
plore this possibility because the task in Experiment 1 was
open-ended and required children to engage in all aspects
of problem decomposition—generating, evaluating, and ex-



Figure 3: Percentage of children who completed the task with
maximal efficiency (only used 3 coins), collapsed into age
bins. Error bars are bootstrapped 95% CI.

ecuting solutions. However, there are reasons to believe that,
when the demands for generating the plans are removed, even
younger children can successfully evaluate the viability of a
given plan. Compared to the process of generating a plan for
decomposing a problem or a structure, evaluating the viability
of an existing plan is arguably an easier task. Prior work sug-
gests that preschool-aged children can easily assemble struc-
tures (Cortesa et al., 2018) and evaluate the relative difficulty
of building different structures (Gweon et al., 2017), suggest-
ing that even though the younger children in Experiment 1 (4-
and 5-year-olds) struggled to generate and execute the plans
themselves, they may be capable of evaluating the viability of
existing decomposition plans.

In Experiment 2, we test this hypothesis with a simple
binary-choice paradigm where we asked children to choose
one of two pre-generated plans (i.e., choose the plan that
would result in a self-supporting structure). Given the sim-
plicity of the task, in addition to 4- and 5-year-olds, who we
expected would succeed, we also tested 3-year-olds; while we
did not have strong a priori predictions regarding the 3-year-
olds’ performance, having a broader age group would allow
us to capture the developmental trajectory of this ability.

Experiment 2
Methods
Participants A total of 78 children were recruited from a
local children’s museum and a university-affiliated preschool
(28 3-year-olds: M = 3.51 (3.02–3.98); 26 4-year-olds: M =
4.42 (4.01–4.93); 24 5-year-olds: M = 5.52 (5.03–5.93)). An
additional 12 children were dropped from analyses because:
(1) they did not speak English (N=1), (2) they did not com-
plete the study (N=4), (3) they failed the pretrial task (N=3,
see Procedure), (4) parents interfered (N=1), or (5) the exper-
imenter made an error (N=3).

Stimuli Stimuli were similar to the blocks structures used
in Experiment 1. A ‘T’ shaped structure (practice trial) and
the upright bridge from Exp. 1 (main trial) were used as target
structures. For both trials we prepared two sets of blocks, pre-

configured in the shape of the target structure and laid flat on
the surface. Critically, only one of the two sets would result
in the correct self-supporting structure (see Fig. 4).

Procedure Children were introduced to block pieces of var-
ious shapes. In the practice trial, the experimenter presented
the T-shaped block structure along with two potential solu-
tions, and asked: “Can you help me build a new building that
looks just like this one and can stand up all by itself? We can
use these blocks (pointing to one set) or these blocks (point-
ing to the other set). Only one will work.”

After the child selected one set of blocks, the experimenter
allowed the child to use the selected blocks to construct the
target structure. Regardless of whether or not the child chose
correctly, the experimenter allowed the child to attempt con-
struction with the other set. After the child succeeded in con-
structing the structure with the correct block set and failed
with the incorrect set, the experimenter reiterated that the
child could build the building with one set of blocks but not
with the other, as it would fall over, so only one set would
work. We excluded children who failed to select one of the
block options in this pretrial task or who began playing with
the blocks before listening to the full explanation.

In the main task, the children were asked to choose one
of two solutions that would result in a standing bridge. We
marked a child as having made a selection when they physi-
cally picked up one of the sets of blocks. The position of the
correct solution (L/R) was counterbalanced across subjects.

Results and Discussion
We first ran a logistic regression on children’s choice with
age as a continuous variable. The effect of age was trending
towards significance (z = 1.81, p = 0.07). We then looked
at each age group separately. Three-year-olds’ responses did
not differ from chance (M = 0.57, CI = 0.39–0.75), whereas
four-year-olds (M = 0.81, CI = 0.65 – 0.92) and five-year-olds
(M = 0.83, CI = 0.67 – 0.96) showed robust success.

To succeed at this task, a child had to be able to understand
the constraints applied to the problem (gravity) and physically
simulate the stability of the resulting structure to choose the
appropriate solution. The success of four- and five-year-old
children on this task provides suggestive evidence that they
are already capable of such sophisticated physical reasoning.
The results also suggest that, even though children in this age
group struggled to complete the task in Experiment 1, their
difficulty with that task did not stem from an inability to as-
sess the viability of a given plan.

Figure 4: Schematic of two potential solutions presented to
children in Experiment 2.



Figure 5: Success rate in Experiment 2. Error bars are boot-
strapped 95% CI. Dotted line indicates chance-level.

General Discussion
Our goal was to assess whether the basic capacities for prob-
lem decomposition—one of the key components of CT—are
present even early in childhood. In Experiment 1, we used a
block-building task that involves generating, evaluating, and
executing an appropriate decomposition plan to build a physi-
cal structure. The results suggest that capacities for top-down
design and problem decomposition continue to develop well
past the preschool years, and that children become more suc-
cessful and efficient with age. Although many younger partic-
ipants failed to complete the task in Experiment 1, in Experi-
ment 2 we find evidence for one of the key steps in successful
problem decomposition: children as young as age 4 were able
to evaluate the viability of potential solutions.

Experiment 1 featured a rather complex task with high ver-
bal demand for understanding the instructions, which may
have increased the task load. Furthermore, this study jointly
required top-down design to generate appropriate solutions,
evaluation of those solutions, and the actual execution of the
plan to assemble the components. Children’s struggle with
this task could reflect their difficulties in any or all of these
steps. Experiment 2 isolates one particular aspect of prob-
lem decomposition. Results suggest that 4- and 5-year-old
children can compare and evaluate two different decomposi-
tion solutions and select the correct one. These results com-
plement prior work (Cortesa et al., 2018) which showed that
young children can construct target structures from predeter-
mined components; beyond using a given set of components
to assemble the target structure, our results show that 4-year-
olds are able to reason ahead under the constraints of a task
to infer the correct set of components, even before they en-
gage in actual assembly. Collectively, these findings indicate
that some basic underlying capacities for problem decompo-
sition may begin to emerge in preschool years, but they also
continue develop well beyond this age.

One might wonder whether children’s abilities to engage
in problem decomposition in our task is restricted by the
physical/spatial domain. Prior work indicates that the abil-
ity to engage in basic spatial reasoning emerges early in life
(Newcombe & Huttenlocher, 2003). For instance, 5-year-olds
show successful mental rotation of a paper cut-out object on

a 2-D plane (Frick, Hansen, & Newcombe, 2013) and under-
stand how a scene would look from another person’s perspec-
tive (Borke, 1975). Our results suggest that even 4-year-olds
can mentally rotate a 3-D structure to assess its stability.

Our study focused on a concrete problem with a clear vi-
sual representation. Our tasks were intentionally reflective
of a thinking pattern common to programming. To solve a
programming problem a programmer must identify indepen-
dently solvable pieces, construct them separately, and then
recombine them into a cohesive solution. Of course, through-
out this process, the programmer must weigh constraints to
make decisions about optimal components or solutions. Simi-
larly, in Experiment 1, children had to identify, construct, and
reassemble components of a larger physical structure; there
was no possible way to build it directly. Thus, one impor-
tant question is whether the ability to decompose a problem
in the spatial domain extends to more abstract CT problems.
Future work might ask whether children’s success in this task
transfers to decomposition of larger tasks in other STEM ar-
eas, such as programming. One possibility is that training
children to engage in decomposing a physical structure might
also help them decompose a larger programming problem.

Another interesting avenue for future exploration is that the
use of concrete objects in physical space might make it easier
for children to engage in successful decomposition even in
these more abstract domains. Indeed, adults often transform
complex abstract tasks into concrete forms, such as diagrams,
to avoid trial-and-error in a complex project. We look for-
ward to future work that asks whether physical affordances
and manipulatives support children’s abstract problem solv-
ing in a similar way.

Mark Guzdial, a leading researcher in CS education, wrote:
“An open research question is what an elementary school
child can learn about computing and what should be taught
at what ages” (2015). Our work, along with prior research in
cognitive development, suggests that CT is not a unitary con-
struct that emerges at any single age. It involves a range of
mental operations which may involve independent develop-
mental trajectories. While children might be able to identify
flaws in systems or construct those systems from predeter-
mined parts in preschool, they may not develop the ability
to generate those parts until much later. Capacities underly-
ing other CT concepts, such abstraction, data representation,
or parallelization, likely also develop in a piecemeal manner
that remains to be discovered.

We look forward to more future work that bridges the gap
between cognitive development and CS education research.
Our work here represents a first step at demonstrating chil-
dren’s developing capabilities in a critical component of com-
putational thinking: problem decomposition. We show that
children may be able to learn basic computational thinking
skills as early as preschool, but that these capacities continue
to develop well into elementary years. As educators continue
to develop CS curriculum, these results can inform when and
how to teach early programming concepts to young students.
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