
A Framework for Decomposition in Computational Thinking
Peter J. Rich

Brigham Young University
Provo, Utah, United States

peter_rich@byu.edu

Garrett Egan
Brigham Young University
Provo, Utah, United States
egan.garrett@gmail.com

Jordan Ellsworth
Brigham Young University
Provo, Utah, United States

jcellswo@gmail.com

ABSTRACT
Computational Thinking has become an important cognitive skill to develop
in all areas of education. Despite its increasing popularity, the construct
itself is only partially understood. There are few measures currently in
place that advance our understanding of computational thinking and its sub-
constructs. In this article, we analyze existing measures of computational
thinking (CT), looking specifically at their measures of decomposition.
Decomposition is defined as the process of breaking down a problem into its
sub-components. Even though most definitions of computational thinking
include decomposition, few break down the decompositional process beyond
a basic definition. As one of the first steps in the computational thinking
process, it is important to better understand the various manners in which
decomposition occurs, which methods are most effective, and under what
conditions. To better understand the decompositional process, we analyze
evidence of decompositional process in a variety of disciplines. We then
present a framework for decomposition in computational thinking. We
demonstrate how this framework may help educators to better prepare
students to break down complex problems, as well as provide guidance for
how decompositional ability might be measured.

CCS CONCEPTS
• Social and professional topics→ Computational thinking;
Student assessment; K-12 education.

KEYWORDS
Computational Thinking, Decomposition, Framework, Assessment
ACM Reference Format:
Peter J. Rich, Garrett Egan, and Jordan Ellsworth. 2019. A Framework for
Decomposition in Computational Thinking. In Innovation and Technology
in Computer Science Education (ITiCSE ’19), July 15–17, 2019, Aberdeen,
Scotland Uk. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3304221.3319793

1 INTRODUCTION
Wing [33] suggested that “Computational Thinking is the thought
processes involved in formulating problems and their solutions so
that the solutions are represented in a form that can be effectively
carried out by an information-processing agent.” CT is not only the
process of solving problems, but also of defining them. As educators
have seen the value of the thought processes involved in CT being
learned at a young age, they have sought to measure and teach

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland Uk
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6301-3/19/07. . . $15.00
https://doi.org/10.1145/3304221.3319793

CT during students’ formative education worldwide [7]. Though
scholars are working to improve the teaching and measurement
of CT, there remains a lack of consistency in the definitions used
to describe CT [22, 24, 27] . These inconsistent definitions cause
measurement and teaching of CT to remain a complex challenge.
The K–12 Computer Science Standards promoted by the Computer
Science Teachers Association (CSTA) acknowledged this difficulty:
“[d]eveloping an approach to computational thinking that is suitable
for K-12 students is especially challenging in light of the fact that
there is, as yet, no widely agreed upon definition of computational
thinking” [11].

Despite the lack of a consistent definition of CT, there are some
components that researchers agree are important aspects of CT,
such as abstraction, decomposition, pattern finding, algorithm build-
ing, and debugging [11, 12].

Grover and Pea [16] asked,“What . . . can we expect children to
know or do better once they‘ve been participating in a curriculum
designed to develop CT and how can this be evaluated?” (p. 42).
Efforts have been made to measure CT through traditional multiple-
choice tests, lesson plans, analysis of computational artifacts, game
design, and mobile app development. A robust measure of compu-
tational thinking ability would measure each of its sub-constructs
without being conflated or confused with other sub-constructs.

One of the most consistently mentioned, but unexplored com-
ponents of CT is decomposition [15, 24, 27]. Most definitions of
computational thinking include decomposition as part of the pro-
cess, but few provide specific details as to how decomposition is
performed, ways of identifying more or less effective means of
decomposing a problem, or common decompositional challenges.
Considering that problem decomposition is one of the first steps of
computational thinking, doing it well can potentially improve or
hinder the entire CT process.

The purpose of this article is to define problem decomposition
beyond a generic, “break down the problem” description [5, p. 430].
We analyze existing measures of CT, looking specifically for their
measures of decomposition. We then explore examples of problem
decomposition across multiple disciplines. This resulted in an emer-
gent framework to better understand decomposition as a distinct
CT skill.

2 LITERATURE REVIEW
A variety of measures, evaluations, and assessments have been
developed to aid in the recognition of CT ability. These have been
tested on children from four to sixteen years of age. Some measures
require students to take a multiple-choice style test agnostic of a
specific programming language or platform, while others involve
the analysis of computational artifacts created by students. Using
Google scholar and the ACM database, we searched for “measure”

https://doi.org/10.1145/3304221.3319793
https://doi.org/10.1145/3304221.3319793
https://doi.org/10.1145/3304221.3319793

or “assess” and “computational thinking.” We were specifically in-
terested in measures created since Wing‘s revival of computational
thinking in 2006. This resulted in 9 measures whose specific aim
was to measure evidence of CT in students or their computational
products. Table 1 presents these measures, the constructs they each
purport to measure, and each measure‘s specific explanation for
how it measured decomposition.

This analysis demonstrates that there are many different con-
structs being measured by the different measures of CT. Regarding
decomposition, the most common approach was not to measure it
at all. When decomposition was measured, it was often measured
by counting the ways in which students ‘modularized” their code.
This is likely due to the fact that modularizing demonstrates a cer-
tain “breaking down” of the code into manageable “blocks.” While
this may be one result of decomposition, this narrow definition
reveals little about how an individual went about modularizing or
decided how to modularize a block of code, and completely masks
the decision-making process inherent in decomposition.

Despite the value these measures bring to the educational com-
munity in measuring CT ability, there are two areas for improve-
ment in existing measures of CT: (a) conflation of multiple aspects
of CT and (b) dependence on expert review for detection of success-
ful decomposition. Conflation occurs when a measure combines
multiple aspects of CT in a single measurement. In many cases,
decomposition was paired with “abstraction” in a measure‘s rubric.
This often occurred with descriptive measures that seek to identify
aspects of CT through artifact analysis. In the case of objectively-
measured tests, a student only receives credit for demonstrating
computational thinking by providing a correct answer. The prob-
lem with this approach is that multiple CT sub-constructs may be
involved in the process of coming to a correct solution. Students
could use some form of cognitive shortcut or ad hoc trial and error
method in order to arrive at the correct answer, which could cause
false positives for CT ability.

Some measures‘ attempts to assess decompositional abilities are
vague and dependent on the “you know it when you see it” notion
that requires expert analysis in order to detect successful CT [8, 18].
This is not to dismiss expert review. Rather, we note that the rubrics
provided in the literature do little more than state, “breaking down
the problem.” This leaves a lot of interpretation up to the expert.
In addition, it suggests that any one “breaking down” process is
the same as any other. Yet, those same experts, when teaching
computational thinking or programming, can identify more and
less successful approaches by their students.

In order to have an effective and holistic measure of CT, we need
an empirical means of measuring decomposition [8]. In order to
develop an effective assessment of decomposition as a part of CT,
we need to understand how decomposition is used as a problem
solving tool. Due to the paucity of guidance provided by existing
measures, we sought to discover the use of decomposition as a
problem-solving strategy in various fields of interest.

3 DECOMPOSITION AS USED IN VARIOUS
FIELDS

Decomposition is a common step in many problem-solving pro-
cesses and is employed in a variety of fields [1, 13]. In order to

Table 1: Table 1: CTMeasures withmeasured sub-constructs

Measure CT Constructs Measured Decomposition
Definition

Computational
Thinking test
[25]

Sequences, loops, conditionals,
functions, logical operations,
testing and debugging„reusing
and remixing, abstracting and
modularizing

“Modularizing”(p.
680)

Dr. Scratch [6] Abstraction & problem decomposi-
tion, parallelism, logical thinking,
synchronization, flow control, user
interactivity, data representation

“Definition of
blocks” (p. 46)

Computational
Thinking Pat-
terns Test [4]

Computational concepts: sequences,
loops, events, parallelism, condi-
tionals, operators and data; Com-
putational practices: experiment-
ing and iterating, testing and de-
bugging, reusing and remixing, ab-
stracting and modularizing, Com-
putational perspectives: expressing,
connecting, and questioning

“Modularizing”(p.
7)

The Fairy Perfor-
mance Assess-
ment, [3]

Comprehension, design, complex
problem solving, debugging

Not measured
specifically

Computational
Thinking Pattern
Analysis (CTPA)

Push, pull, transportation, collision,
absorption, generations, cursor con-
trol, hill climbing, diffusion.

Not measured
specifically

CS4Impact [5] Data collection, data analysis, data
representation, problem decompo-
sition, abstraction, algorithms and
procedures, automation, paralleliza-
tion, simulation, connection to
other fields

“Students are
required to break
the problem
down on their
own.” (p. 430)

Progression of
Early Computa-
tional Thinking
(PECT) [28]

Procedures and algorithms, prob-
lem decomposition, parallelization
and synchronization, abstraction,
data representation

“Modularize. . . ”(p.
63)

Evaluation of
Computer Games
[2]

Sequence, iteration, variables, con-
ditional statements, lists (arrays),
event handling, threads, coordina-
tion and synchronisation, keyboard
input, random numbers, boolean
logic, dynamic interaction, user in-
terface design

Not measured
specifically

Assessment of
Mobile Computa-
tional Thinking,
[26]

Naming, procedural abstraction,
variables, loops, conditionals, lists,
screen interface, events, component
abstraction, data persistence, data
sharing, public web services, ac-
celerometer & orientation sensors,
location awareness

Not measured
specifically

better understand decomposition, we analyzed case studies from
various fields of research to determine how decomposition is used,
understood, and measured.

The fields we selected came primarily from their inherent con-
nection to CT, such as STEM fields like Computer Science and Engi-
neering. We searched Google Scholar, ACM, EBSCO, and Scopus for
“problem decomposition,” “problem setup,” “breaking down the prob-
lem,” “modularization,” and related terms in articles that provided
information on the decompositional process in these respective
fields. We found little direct research on problem decomposition
within these STEM fields. This could have occurred because of dif-
ferences in term usage, such as the term “decomposition” when
used in the context of Biology, and the broad usage of other terms,
such as “problem-solving.” We then broadened our search to include
case studies that evaluated problem solving within these fields. In
these case studies, we analyzed how the authors described their
process for breaking down complex problems, and we identified
principles of decomposition within their work.

After an initial investigation, we recognized connections be-
tween what we had found in these STEM fields with principles of
foundational theoretical fields, such as Philosophy, Anthropology,
and Design. In order to add to our theoretical understanding of de-
composition as a problem-solving strategy, we searched for articles
in these theoretical fields for information that would improve our
understanding of decompositional processes in non-STEM fields.

In the following section, we present research from STEM and
non-STEM fields that demonstrates how decomposition may be
approached and understood from various perspectives. The goal
of this section is to demonstrate the variety of ways individuals
approach decomposition, as well as to extract common decomposi-
tional principles.

3.1 Decomposition in STEM
Common ways of decomposing the computational problems we
analyzed in computer science were to break down the problem by
its structure, function, sequence, and dependence [10, 19, 20, 31].
Structural decomposition consists of breaking down the problem
into the sub-pieces and resolving each one separately. Functional
decomposition breaks the problem down by which functions are
performed by which pieces of the system, separating them so that
each can be analyzed separately. Sequential decomposition deter-
mines the order of operations in a process or other sequence of
steps, and dependence decomposition breaks down the problem
by which parts are dependent on which other parts. Each of these
ways of decomposing a problem appears to be more effective in
specific situations, depending on what information is needed in
order to resolve the problem.

Another important finding from the Computer Science literature
is the concept of black box programming [14]. A black box is a
device, process, or system whose inputs, outputs, and relationships
to other processes or systems may be known, but whose internal
structure is unknown. Most problems, prior to successful decompo-
sition, are like black boxes, whose inner structures and relationships
are unknown to the problem solver.

In engineering, math, science, and technology, we found the
decomposition process simply defined as “the act of breaking some-
thing down into simpler constituents” [21]. Mattson Sorenson
maintain that the two most common forms of breaking down prob-
lems and products in engineering are structural decomposition and
functional decomposition. Those observations come from a product
development perspective, focusing on how to creatively begin the
product design process. Structural decomposition involves divid-
ing the problem up into its physical components. For example, a
bicycle could be broken down into the seat, wheels, brakes, gears,
etc. Functional decomposition involves splitting the problem into
sections based on what they perform. Sorensen and Mattson (ibid)
suggest this strategy to be especially useful when “there is no es-
tablished concept or preconceived structure” (p. 228). For example,
if we were to need something to get us to the store and back, we
could break it down into sections such as: time to arrive at store,
top speed, steering method, etc. This example illustrates how an
unsolved problem acts as a black box until it is broken down into
a more understandable set of structures and functions that can be
used to solve the larger problem.

3.2 Decomposition in Non-STEM Fields
In Ontology (i.e., the study of being) philosopher researchers have
tried for centuries to categorize the types of beings, as well as
the characteristics that define existence. Two common categories
spoken of are substance and relation, the matter and how that
matter compares and relates to other matter (Heidegger, 1927).
Many sub-categories are also identified based on their relevance
to a specific issue or field, such as place, time, state, sequence,
and dependence. Place, as a form of categorizing types of beings,
states that some objects are above other objects, or some objects
are located on the ground. Some commonly used categories are
sequence, relation, and substance or physical characteristics [23, 32?
].

It is also important to note that philosophical understanding of
problem decomposition tends to focus on breaking down a problem
as a strategy for understanding the problem better [?]. This is
similar to using dissection as an educational activity for better un-
derstanding animal anatomy and biology. This also relates strongly
with the goal of opening up the black box and better understanding
the inner workings of any given system, process, or device. The
task of decomposition is not used as the goal, but rather the means
of gaining some important new information that will inform the
next steps of the problem solving strategy. James Spradley [30], a
well-known ethnographer, outlined a series of semantic relation-
ships that can be used to better understand how individuals interact
within and relate to their cultures. Namely:

• Strict Inclusion - X is a kind of Y
• Spatial - X is a place in Y; X is a part of Y
• Cause-Effect - X is a cause/result of Y
• Rationale - X is a reason for doing Y
• Location for - X is a place for doing Y action
• Function - X is used for Y
• Means-end - X is a way to do Y
• Sequence - X is a step/stage in Y
• Attribution - X is an attribute/characteristic of Y

These semantic relationships are used as a way to meaningfully
decompose and categorize parts of a culture into its relational sub-
parts. For example, the “Location for” relationships help to describe
where tasks are typically performed in a specific culture. This de-
compositional strategy is intended as an iterative process of succes-
sively approximating a solution, using problem decomposition as a
means of identifying ways of reaching the next successful iterative
step [29].

4 A DECOMPOSITIONAL FRAMEWORK
Before successful decomposition is performed, a problem or sub-
problem is known only as a black box. The inputs, outputs, and other
relationships between problems or sub-problems may be known,
but the inner workings of the problem at hand are unknown. De-
composition helps the problem solver to better understand the inner
function of the problem by unpacking the problem and separating it
into multiple sub-problems. Often, when breaking down a problem
into sub-problems, the sub-problems all begin as black boxes as
well, with their inner structures unknown to the problem solver.

For example, in this article we have broken down CT into the
component parts decomposition, abstraction, pattern-finding, algorithm-
building, and debugging. By breaking down CT in this way, we
better understand how it works, even if we do not yet have a com-
plete understanding of the inner workings of each sub-construct.
The next step is to break down each sub-construct to unpack those
black boxes as well.

4.1 Decompositional Categorization
One of the key features of decomposition is the differentiating and
categorizing of parts of a problem or sub-problem [12]. The goal
of this activity is to divide the problem or sub-problem into more
manageable pieces or to gain better understanding of the problem
by breaking it down into its component parts.

Two general forms of decomposition emerged from our exami-
nation of the theoretical and practical examples found in the pre-
viously explored fields. Those two forms of decomposition are
substantive decomposition and relational decomposition [17].

4.1.1 Substantive Decomposition. Substantive decomposition in-
volves the breaking down of a problem or artifact by its componen-
tial characteristics, such as breaking down a jigsaw puzzle by its
various pieces, a painting by the colors used, or an article by its
paragraphs. These are attributes or parts of the object or idea being
decomposed. When decomposing a problem, a person identifies a
meaningful axis on which they can categorize parts of the problem,
and then they divide and cluster those parts into the identified
categories along the specified axis [15].

Axis selection is dependent on the problem statement and con-
text. One such axis could be to break down a problem artifact by
its component parts, separating connected pieces at their joints
in order to understand each part individually. This is commonly
used in the analysis of physical objects, such as in automobiles or
human anatomy [9], but can also be used to better understand the
component parts of an abstract concept, such as the breaking down
of an argument into its premises, assumptions, and conclusions.

Figure 1 ?? shows the general case of substantive decomposition,
where some component A is broken down into two sub-components

B and C. These two sub-components are then considered separately
and distinct of each other, and they provide additional information
while separate that was not provided while combined.

Figure 1: Substantive Decomposition Process

4.1.2 Relational Decomposition. Each component or sub-component
of the problem may relate to other parts and sub-parts. Those re-
lations could be based on time, sequence, location, dependence,
function, or any of the other previously mentioned categories of
relational decomposition.

Relational decomposition is performed by assigning a relation
between two components or sub-components of a problem. This
can be done, if desired, similar to substantive decomposition, by
determining a type of relation, such as dependence, function, or
sequence, and assigning all relations of that type to the various
components and sub-components identified.

Figure 2 ?? shows the general case of relational decomposition,
where some components A and B are assigned a relation. Prior to
this relational decomposition, A and B were not considered to be
related in this way.

Figure 2: Relational Decomposition Process

4.1.3 Combining Substantive and Relational. Using Spradley‘s [30]
set of semantic relationships listed earlier, we can better visualize
how substantive and relational decompositions work together.

Substantive decomposition creates the “X” and “Y” of the seman-
tic relationships. Relational decomposition creates the connection
between the “X” and the “Y.” For example, the semantic relationship
“X is a cause/result of Y” relates two substantive parts or sub-parts
of a problem using a cause-effect relationship. Each substantive
part or sub-part could be understood separate from the specific
relational situation, but given the current circumstance, they are
related in the specified manner.

4.1.4 Resolving Functional Decomposition. In Engineering, Com-
puter Science, Design, and other fields, we observe problems fre-
quently broken down by their functions. We believe that functional
decomposition is the result of substantive and relational processes.
For example, in Computer Science, a program is often broken down
into a series of objects related by the functions that they perform,
and how that relates those objects to the other objects in the system.
Functional decomposition is understood through this framework
as a combination of a substantive and relational decomposition

combined to form a decompositional semantic relationship. This
includes two or more components or sub-components related by
a functional relationship. An example of this is shown in Figure
3 ??, which depicts a class “Person”, a class “Ball”, and a relationship
between them called “Kick.” A function includes both substantive
components and the relationship between them. This is similar to
the identification of “propositions” in cognitive science, wherein
memories are identified as nodes that are related to each other
semantically (Anderson, 2005). Decomposing by function, then, is a
parallel substantive and relational decomposition, which separates
objects into their functional sub-groups and labels them with the
appropriate functional relationships.

Figure 3: Functional Decomposition Process

With these two general categories of decomposition— substan-
tive and relational—we can better understand the categorical pro-
cess of decomposing a problem, and how that decompositional
process helps to gain new meaningful information for solving the
overall problem.

4.2 Decomposition as an Iterative Process
The act of decomposing a problem into its sub-parts appears to
be an iterative process that involves a series of steps or events
that contribute to the overall act of problem decomposition [29].
Similar to many design processes, such as the Engineering Design
Process (EDP), instructional design processes such as the Successive
Approximation Model (SAM), and others, this process includes
multiple steps that can be repeated any number of times until
sufficient information has been gathered to solve the problem. The
generic steps we’ve identified are described below.

(1) Identify an Axis: One or more axes are identified as potential
candidates to be used as part of the problem decomposi-
tion, based on their perceived potential value added toward
solving the problem.

(2) Proactively evaluate: Each axis is evaluated for its potential
to add new meaning or understanding to the problem prior
to carrying at the decomposition.

(3) Accept/Reject Axis: Each axis is then either accepted or re-
jected, based on the previous evaluation. If rejected, a new
axis is identified and evaluated. If accepted, the process con-
tinues.

(4) Execute Decomposition: The selected axis is used to categorize
and label the parts and sub-parts of the problem.

(5) Retroactively Evaluate: The resulting decomposed version
of the problem is evaluated for its ability to help solve the
problem.

This decompositional process can be repeated as required in or-
der to gain sufficient meaning and begin reconstructing the solution
to the problem through patterns and algorithms. These events do
not necessarily occur linearly, as various axes could be identified
and decomposed in parallel to identify their related or differentiated
value or meaning. This iterative approach to problem decomposi-
tion suggests that decomposition may occur at almost any point
during CT. This contrasts with the belief that CT is a linear process,
and that problem decomposition only occurs at one point of the
process.

4.3 Decompositional Strategies
Problem decomposition is a tool that can be used as a part of a larger
problem-solving strategy. We can learn many of the uses of problem
decomposition as a part of CT by viewing problem decomposition
through a lens of various problem-solving strategies. Below is a list
of a few examples, for illustration.

• Means-end decomposition: Starting from the desired end so-
lution and working backwards to break the problem into its
component parts. In this approach, the last pieces decom-
posed become the first pieces developed.

• Bottom-Up decomposition: Using a specific sub-piece to iden-
tify the related axis. This most commonly occurs when a
specific sub-part of the problem is known, but its relation-
ship to the whole is unclear and relevant to resolving the
whole problem.

• Multivariate decomposition: Using multiple axes to identify
parts or sub-parts that exist in a cross-sectional category or
to prove dissociation between specific parts or sub-parts.

• Multi-level decomposition: Decomposing the problem mul-
tiple times, categorizing sub-parts from a specific category
into sub-categories.

• Comparative decomposition: Using multiple axes to identify
similarities or differences in the clustering of parts or sub-
parts based on the different axes. This can be a useful method
for finding common threads in multiple arguments, defini-
tions, etc.

5 DISCUSSION
To provide clarity for this decompositional framework, we now
consider a few examples below to illustrate the practical application
of this framework to computational problems.

5.1 Example 1: Coding a Queue
Our first example is of a computer science assignment to create a
simple queue class.

A studentmight initially identify that there are component pieces
required in a queue class, such as some form of data storage (array,
variables, etc.) and functions to add and remove items from the
queue. This is an example of substantive decomposition, identifying
the parts needed in order to solve the problem.

The student might then identify that a queue adds items to the
back of the line and retrieves them from the front of the line. This

means that there is a sequence to the objects in the queue, as well as
functional relations between the abstract queue class and the data
storage object accessed by that class. This is an example of relational
decomposition, identifying the ways in which the substantive parts
of the problem interact and relate.

In order to organize their thoughts, the student might draw
a concept map of the different objects involved in solving this
problem, as well as the ways in which they relate.

A teacher could then view the students’ design and assist the
student to identify all of the necessary objects and relationships
involved in the problem. The teacher may also assess the order in
which objects/relationships were identified, grouped, and labeled,
giving a more concrete way to measure successful decomposition.

5.2 Example 2: Predicting the Tides
Our second example is of an Earth Science assignment to predict
the height of the ocean tides in a specific area using pre-generated
data available online. A student might first identify the substantial
variables that might be used to predict tide height, such as time of
day, temperature, moon phase, etc. The student might then identify
or test the ways these variables relate to tide height and to each
other in order to identify patterns. Once the student has identified
any noticeable patterns in the data, they might then mentally note
the relationships between variables and remove variables that have
no impact on tide height while focusing on variables that have the
strongest impact. By performing this decomposition successfully,
the student will be set up well to create an algorithm for accurately
predicting the height of the tides. The algorithm, after all, is a
series of relationships between variables that is used to predict an
outcome.

Notice that some instances of decomposition occurs before pattern-
finding or abstraction, while others occur after. Decomposition is
also a potential part of the debugging process as well. This illus-
trates the iterative nature of CT, with decomposition occurring
throughout the process, and not only initially in a linear fashion.

6 CONCLUSION
While there are a variety of existing measures of Computational
Thinking, none of these adequately assess decomposition. By ana-
lyzing decompositional practices in a diversity of domains, we have
more fully described what’s inside the black box of decomposition.
Namely, decomposition can be viewed of as a process of:

(1) categorizing potential elements
(a) identifying substantive elements
(b) identifying relationships between elements

(2) employing different strategies to execute a chosen decompo-
sition (e.g., means-end, bottom-up, multivariate)

(3) iteratively evaluating the utility of a specific decomposition

This is a nascent framework and needs further exploration. Through
highlighting these process can now ask questions about what types
of categorizations or strategies do experts vs. novices utilize, or
how can we more purposefully operationalize decomposition. In
answering such questions, we hope to be able to formulate a more
holistic measure of CT.

REFERENCES
[1] 2009. Design science as nested problem solving. ACM.
[2] 2012. Evaluation of computer games developed by primary school children to gauge

understanding of programming concepts.
[3] 2012. The fairy performance assessment: measuring computational thinking in

middle school. ACM.
[4] 2012. New frameworks for studying and assessing the development of computational

thinking. Citeseer.
[5] 2013. CS4Impact: measuring computational thinking concepts present in CS4HS

participant lesson plans. Vol. Proceeding of the 44th ACM technical symposium
on Computer science education. ACM.

[6] 2015. Automatic detection of bad programming habits in scratch: A preliminary
study. IEEE.

[7] 2017. Assessing children’s understanding of the work of computer scientists: the
draw-a-computer-scientist test. ACM.

[8] 2018. Labeling Implicit Computational Thinking in Pizza Pass Gameplay. ACM
Press, New York, New York, USA.

[9] A Avolio. 1980. Multi-branched model of the human arterial system. Medical &
Biological Engineering & Computing (1980), 709–718.

[10] P. J. Blanco, J. S. Leiva, R. A. Feijoo, and G. C. Buscaglia. 2010. Black-box decom-
position approach for computational hemodynamics: One-dimensional models.
Computational Methods for Applied Mechanical Engineering (2010), 1385–1405.

[11] CSTA. 2017. K-12 Computer Science Standards, Revised 2017. CSTeachers.org.
[12] J. Cuny, L. Snyder, and J. M. Wing. 2010. Demystifying computational thinking

for non-computer scientists. Unpublished manuscdript in progress (2010).
[13] R. Davis and R. G. Smith. 1983. Negotiation as a metaphor for distributed problem

solving. Artificial Intelligence 20, 1 (1983), 63–109.
[14] B. Du Boulay, T. O’Shea, and J. Monk. 1981. The black box inside the glass box:

presenting computing concepts to novices. International Journal of Man-Machine
Studies 14, 3 (1981), 237–249.

[15] D Fried, A. Legay, J. Ouaknine, and M. Y. Vardi. 2018. Sequential relational
decomposition. ACM/IEEE Symposium on Logic in Computer Science (2018), 432–
441.

[16] Shuchi Grover and Roy Pea. 2013. Computational Thinking in K—12: A Review
of the State of the Field. Educational Researcher 42, 1 (2013), 38–43.

[17] M Heidegger. 1927. Neomarius Verlag. In Sein und Zeit, J. Macquarrie and
E. Robinson (Eds.). Harper & Row, New York, 41–311.

[18] C. Ho. 2014. Some phenomena of problem decomposition strategy for design
thinking. Design Studies 22, 1 (2014), 27–45.

[19] A. Leygue and E. Verron. 2010. A first step towards the use of proper general
decomposition method for structural optimization. Springer Link 17, 4 (2010),
465–472.

[20] N. A. M. Maiden and A. G. Sutcliffe. 1996. A computational mechanism for
parallel problem decomposition during requirements engineering. IEEE (1996),
159–163.

[21] C. A. Mattson and C. D. Sorenseon. 2017. Fundamentals of Product Development.
Vol. 5th ed. Springer.

[22] Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, Inc., New York, NY: USA.

[23] A Potesta. 2016. The fragility of the present and the task of thinking: Heidegger,
thinker of the future. Philosophy Today 60, 4 (2016), 911–925.

[24] Noa Ragonis and Päivi Kinnunen (Eds.). 2015. Concepts in K-9 Computer Science
Education. Vol. the 2015 ITiCSE. ACM Press, New York, New York, USA.

[25] Marcos Román-González, Juan-Carlos Pérez-González, and Carmen Jiménez-
Fernández. 2017. Which cognitive abilities underlie computational thinking?
Criterion validity of the Computational Thinking Test. Computers in Human
Behavior 72 (2017), 678–691.

[26] Mark Sherman and Fred Martin. 2015. The assessment of mobile computational
thinking. Journal of Computing Sciences in Colleges 30, 6 (2015), 53–59.

[27] Valerie J. Shute, Chen Sun, and Jodi Asbell-Clarke. 2017. Demystifying computa-
tional thinking. Educational Research Review (2017).

[28] Beth Simon, Alison Clear, and Quintin Cutts (Eds.). 2013. Modeling the learning
progressions of computational thinking of primary grade students. Vol. the ninth
annual international ACM conference. ACM Press, New York, New York, USA.

[29] James Spradley. 1979. The ethnographic interview. Harcourt Brace Jovanovich.
College Publishers, Fort Worth, Texas: USA.

[30] James Spradley. 1980. Participant observation. Holt, Rinehart, and Winston, New
York, NY: USA.

[31] A. Tarlecki, R. M. Burstall, and J. A. Goguen. 1991. Some fundamental algebraic
tools for the semantics of computation: Part 3. Indexed Categories. Theoretical
Computer Science (1991), 239–264.

[32] A. L. Thomasson. 2008. Existence questions. Springer Science & Business Media
(2008), 63–78.

[33] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35.

	Abstract
	1 Introduction
	2 Literature Review
	3 Decomposition as used in Various Fields
	3.1 Decomposition in STEM
	3.2 Decomposition in Non-STEM Fields

	4 A Decompositional Framework
	4.1 Decompositional Categorization
	4.2 Decomposition as an Iterative Process
	4.3 Decompositional Strategies

	5 Discussion
	5.1 Example 1: Coding a Queue
	5.2 Example 2: Predicting the Tides

	6 Conclusion
	References

